9,532 research outputs found

    The Latin Leaflet, Number 29

    Get PDF
    Polymer electrolytes represent the ultimate in terms of desirable properties of energy storage/conversion devices, as they can offer an all-solid-state construction, a wide variety of shapes and sizes, light-weight, low costs, high energy density and safety. Here we present our recent results concerning a novel strategy for preparing efficient polymer membranes which are successfully demonstrated as suitable electrolytes for several energy conversion and storage devices (i.e., Li- and Na-based batteries and DSSCs). Highly ionic conducting polymer electrolytes containing PEO-based functionalities and different components (e.g., Li/Na salts, RTILs, natural biosourced and cellulosic fillers) are successfully prepared via a rapid process and, directly or subsequently, cross-linked via UV irradiation (patent pending, PCT/IT2014/000008). All the prepared materials are thoroughly characterised in terms of their physical, chemical and morphological properties and tested for their electrochemical performances and durability. The UV-curing process on such materials led to the production of elastic and resistant amorphous macromolecular networks. Noticeably increased ionic conductivities are registered (10-3 S cm-1 at RT), along with very stable interfacial and storage stability and wide electrochemical stability windows. The different lab-scale solid-state devices show remarkable performances even at ambient temperature, at the level of those using liquid electrolytes, respect to which demonstrate much greater durability and safety. The obtained findings demonstrate a new, easy and low cost approach to fabricate and tailor-make polymer electrolytes with highly promising prospects for the next generation of advanced flexible energy production and storage devices

    The Two Phases of Galaxy Formation

    Full text link
    Cosmological simulations of galaxy formation appear to show a two-phase character with a rapid early phase at z>2 during which in-situ stars are formed within the galaxy from infalling cold gas followed by an extended phase since z<3 during which ex-situ stars are primarily accreted. In the latter phase massive systems grow considerably in mass and radius by accretion of smaller satellite stellar systems formed at quite early times (z>3) outside of the virial radius of the forming central galaxy. These tentative conclusions are obtained from high resolution re-simulations of 39 individual galaxies in a full cosmological context with present-day virial halo masses ranging from 7e11 M_sun h^-1 < M_vir < 2.7e13 M_sun h^-1 and central galaxy masses between 4.5e10 M_sun h^-1 < M_* < 3.6e11 M_sun h^-1. The simulations include the effects of a uniform UV background, radiative cooling, star formation and energetic feedback from SNII. The importance of stellar accretion increases with galaxy mass and towards lower redshift. In our simulations lower mass galaxies (M∗<9e10Msunh−1)accreteabout60percentoftheirpresent−daystellarmass.Highmassgalaxy(M_* < 9e10 M_sun h^-1) accrete about 60 per cent of their present-day stellar mass. High mass galaxy (M_* > 1.7e11 M_sun h^-1) assembly is dominated by accretion and merging with about 80 per cent of the stars added by the present-day. In general the simulated galaxies approximately double their mass since z=1. For massive systems this mass growth is not accompanied by significant star formation. The majority of the in-situ created stars is formed at z>2, primarily out of cold gas flows. We recover the observational result of archaeological downsizing, where the most massive galaxies harbor the oldest stars. We find that this is not in contradiction with hierarchical structure formation. Most stars in the massive galaxies are formed early on in smaller structures, the galaxies themselves are assembled late.Comment: 13 pages, 13 figures, accepted for publication in Ap

    Document retrieval hacks

    Get PDF
    Publisher Copyright: © Simon J. Puglisi and Bella Zhukova; licensed under Creative Commons License CC-BY 4.0 19th International Symposium on Experimental Algorithms (SEA 2021).Given a collection of strings, document listing refers to the problem of finding all the strings (or documents) where a given query string (or pattern) appears. Index data structures that support efficient document listing for string collections have been the focus of intense research in the last decade, with dozens of papers published describing exotic and elegant compressed data structures. The problem is now quite well understood in theory and many of the solutions have been implemented and evaluated experimentally. A particular recent focus has been on highly repetitive document collections, which have become prevalent in many areas (such as version control systems and genomics - to name just two very different sources). The aim of this paper is to describe simple and efficient document listing algorithms that can be used in combination with more sophisticated techniques, or as baselines against which the performance of new document listing indexes can be measured. Our approaches are based on simple combinations of scanning and hashing, which we show to combine very well with dictionary compression to achieve small space usage. Our experiments show these methods to be often much faster and less space consuming than the best specialized indexes for the problem.Peer reviewe

    BMP2 and TGF-ÎČ Cooperate Differently during Synovial-Derived Stem-Cell Chondrogenesis in a Dexamethasone-Dependent Manner

    Get PDF
    Recent studies highlighting mesenchymal stem cell (MSC) epigenetic memory suggest that a different differentiation medium may be required depending on the tissue of origin. As synovial-derived stem cells (SDSCs) attract interest we aimed to investigate the influence of TGF-ÎČ1, BMP-2 and dexamethasone on SDSC chondrogenesis in vitro. We demonstrate that dexamethasone-free medium led to enhanced chondrogenic differentiation at both the mRNA and matrix level. The greatest COL2A1/COL10A1 ratio was detected in cells exposed to a combination medium containing 10 ng/mL BMP-2 and 1 ng/mL TGF-ÎČ1 in the absence of dexamethasone, and this was reflected in the total amount of glycosaminoglycans produced. In summary, dexamethasone-free medium containing BMP-2 and TGF-ÎČ1 may be the most suitable when using SDSCs for cartilage tissue regeneration

    The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells

    Get PDF
    Background: While nanotechnology is advancing rapidly, nanosafety tends to lag behind since general mechanistic insights into cell-nanoparticle (NP) interactions remain rare. To tackle this issue, standardization of nanosafety assessment is imperative. In this regard, we believe that the cell type selection should not be overlooked since the applicability of cell lines could be questioned given their altered phenotype. Hence, we evaluated the impact of the cell type on in vitro nanosafety evaluations in a human and murine neuroblastoma cell line, neural progenitor cell line and in neural stem cells. Acute toxicity was evaluated for gold, silver and iron oxide (IO) NPs, and the latter were additionally subjected to a multiparametric analysis to assess sublethal effects. Results: The stem cells and murine neuroblastoma cell line respectively showed most and least acute cytotoxicity. Using high content imaging, we observed cell type-and species-specific responses to the IONPs on the level of reactive oxygen species production, calcium homeostasis, mitochondrial integrity and cell morphology, indicating that cellular homeostasis is impaired in distinct ways. Conclusions: Our data reveal cell type-specific toxicity profiles and demonstrate that a single cell line or toxicity end point will not provide sufficient information on in vitro nanosafety. We propose to identify a set of standard cell lines for screening purposes and to select cell types for detailed nanosafety studies based on the intended application and/or expected exposure

    Assessment of Regeneration Stocking Standards Used in Alberta: A Follow-Up

    Get PDF

    Many continuous functions have many proper local extrema

    Get PDF
    AbstractGiven a topological space X, let M(X) (resp. m(X)) denote the set of all continuous real functions on X whose set of proper local maximum (resp. minimum) points is dense in X. We identify some classes of spaces X for which M(X) is a dense subset of C(X) endowed with the majorant topology. In particular, M(X) ∩ m(X) is dense in C(X) with the majorant topology whenever X has a σ-discrete π-base and a dense subset whose points are GÎŽ-sets.Also we show that M(X) ∩ m(X) is residual in C(X) endowed with the topology of uniform convergence, provided that X has a σ-discrete π-base consisting of completely metrizable subspaces. This is true, in particular, for all completely metrizable spaces
    • 

    corecore