Polymer electrolytes represent the ultimate in terms of desirable properties of energy storage/conversion devices, as they can offer an all-solid-state construction, a wide variety of shapes and sizes, light-weight, low costs, high energy density and safety.
Here we present our recent results concerning a novel strategy for preparing efficient polymer membranes which are successfully demonstrated as suitable electrolytes for several energy conversion and storage devices (i.e., Li- and Na-based batteries and DSSCs). Highly ionic conducting polymer electrolytes containing PEO-based functionalities and different components (e.g., Li/Na salts, RTILs, natural biosourced and cellulosic fillers) are successfully prepared via a rapid process and, directly or subsequently, cross-linked via UV irradiation (patent pending, PCT/IT2014/000008). All the prepared materials are thoroughly characterised in terms of their physical, chemical and morphological properties and tested for their electrochemical performances and durability. The UV-curing process on such materials led to the production of elastic and resistant amorphous macromolecular networks. Noticeably increased ionic conductivities are registered (10-3 S cm-1 at RT), along with very stable interfacial and storage stability and wide electrochemical stability windows. The different lab-scale solid-state devices show remarkable performances even at ambient temperature, at the level of those using liquid electrolytes, respect to which demonstrate much greater durability and safety.
The obtained findings demonstrate a new, easy and low cost approach to fabricate and tailor-make polymer electrolytes with highly promising prospects for the next generation of advanced flexible energy production and storage devices