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Given a topological space X, let M(X) (resp. m(X)) denote the set of all con- 
tinuous real functions on X whose set of proper local maximum (resp. minimum) 
points is dense in X. We identify some classes of spaces X for which M(X) is a 
dense subset of C(X) endowed with the majorant topology. In particular, 
M(X)nm(X) is dense in C(X) with the majorant topology whenever X has a 
u-discrete n-base and a dense subset whose points are G,-sets. 

Also we show that M(X) n m(X) is residual in C(X) endowed with the topology 
of uniform convergence, provided that X has a u-discrete n-base consisting of com- 
pletely metrizable subspaces. This is true, in particular, for all completely metrizable 
spaces. ‘(‘1 1991 Academic Press. Inc. 

Let X be a topological space. Given a function f: X+ R we say that a 
point x E X is a proper local maximum (resp. minimum) point for f 
provided that there exists a neighbourhood U of x such that f(y) <f(x) 
(resp. f(y) >f(x)) for every YE U\{X>. We denote by M(f) (resp. m(f)) 
the set of all proper local maximum (resp. minimum) points for f: Of 
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course M(f) n m(,f’) consists of all the isolated points of X, also it is 
obvious that if f is a continuous function, then {.x} is a G,-set in X for 
every x E M(f) u m(f) (these easy remarks will explain the reason of some 
assumptions in the statements of Section 1). 

Let C(X) be the set of all continuous real functions on X. Also let M(X) 
(resp. m(X)) denote the subset of C(X) consisting of all functions J’ for 
which M(f) (resp. m(S)) is a dense set in X. As the title suggests, the pur- 
pose of this paper is to show that if the space X satisfies some suitable 
assumptions, then M(X), or even M(X)nm(X), is (in a sense to be 
specified) a rather numerous subset of C(X) with respect to some natural 
topology for C(X). 

To make clear the last point, there are two topologies that will be 
considered for C(X), namely, the majorant topology, i.e., that topology in 
which basic neighborhoods off E C(X) are the sets 

(g E C(X): [g(x) -,f(x)l < E(X) for every I E Xj 

with t: E C(X), E > 0 everywhere in X, and the topology of uniform con- 
vergence, i.e., the topology induced by the metric p of uniform convergence 
on X: 

PM g) =min{l, sup(lf(x) - s(x)l: XEX} 1 

for everyf, gE C(X) (recall that with this metric C(X) is a complete metric 
space). Of course the majorant topology is stronger than that of uniform 
convergence; moreover, the two topologies coincide if and only if the space 
X is pseudocompact (according to the definition given in [6, p. 1261). 

Coming back to the subject of the paper, there are some recent results 
along the above indicated direction which have been obtained by A. Villani 
[S], who proved that M(X) is a dense subset of C(X) endowed with the 
majorant topology whenever the space X is metrizable, and by V. Drobot 
and M. Morayne [l], who showed that for X= [0, 1 J, the set M(X) is a 
residual Bore1 subset of C(X); as a matter of fact, the argument given in 
[ 1 ] is easily realized to work with minor changes for any separable locally 
compact metrizable space, if the topology of uniform convergence is con- 
sidered for C(X). By the way, we recall here that a very strong result, 
implying that M( [0, 11) nm([O, 11) is nonempty, is due to Z. Zalcwasser 
[7], who proved that for any two disjoint countable sets A, Bc [0, l] 
there exists a differentiable function f: [0, l] -+ R such that M(f) = A, 
m(f) = B. We refer the reader also to [3] for a short proof of the result by 
Zalcwasser, to [4] for a nice elementary proof that M(R) is nonempty, and 
to the literature cited in [I] for further references. 

In this paper the above quoted results, namely those from [S, 11, are 
extended to more general classes of topological spaces. More precisely, 
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in Section 1 we consider the density of M(X), or M(X) n m(X), in C(X) 
endowed with the majorant topology, and show, among other things, that 
M(X) n m(X) is dense in C(X) provided that X is a completely regular 
space which has a a-discrete n-base and a dense subset whose points are 
G,-sets in X. In Section 2 we consider the residuality of M(X) in C(X) 
endowed with the topology of uniform convergence. A simplified statement 
of our main result is that M(X) (and hence M(X) A m(X)) is a residual set 
in C(X) whenever X has a c-discrete n-base consisting of completely 
metrizable subspaces. This is true in particular for all completely metrizable 
spaces. 

It is worth recalling here, for the reader’s convenience, that a family 011 
of nonempty open subsets of a space X is said to be a n-base for X 
provided that every nonempty open set A c X contains some U E @. 

Throughout the paper, regular, completely regular and normal spaces 
need not be Hausdorff. 

1. SOME DENSITY RESULTS 

As announced before, this section is devoted to establishing some 
sufficient conditions for a topological space X in order that M(X) be a 
dense subset of C(X) endowed with the majorant topology. 

To simplify our exposition, it is convenient to set down formally the 
following definition. 

DEFINITION. A nonempty subset D of a space X is said to be strongly 
discrete provided that there exists a discrete family ( I’,: s E D} of open sub- 
sets of X such that s E V, for every s E D. Also the empty set is considered 
to be strongly discrete, just by convention. 

A set SC X is said to be a-strongly discrete if S is a countable union of 
strongly discrete sets. 

Of course, a strongly discrete set D is also discrete; i.e., D is a discrete 
space with the relative topology, provided that D is nonempty. Also, in a 
T,-space every strongly discrete set is closed. Conversely, if the space X is 
normal and collectionwise Hausdorff (i.e., for every nonempty discrete set 
A c X there is a family { W,: t E A} of pairwise disjoint open sets with 
t E W, for each t E A), then every closed discrete set is strongly discrete. To 
see this, assume that A is a nonempty closed discrete set and take a family 
{ W,: t E A} as before. Also, using normality, take an open set V with 
AC Vc PclJ {W,: tEA). Then tE Vn W, for every ted, and it is easy 
to check that ( V n W,: t E A} is a discrete family. 

The following lemma will be applied repeatedly in the proof of forth- 
coming Theorem 1. 
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LEMMA. Let X he a completely regular space. Let D c X be a nonempty 
strongly discrete set such that every singleton {s}, with s E D, is a G,-set in 
X. Also, let H c X be a closed set disjoint from D. 

Then, jbr every cp, q E C(X) with ye > 0 everywhere in X, there exist 
$EC(X) and {B,s: s E D >, a discrete family of closed sets, disjoint from H, 
with s E Int(B,) ,for every s E D, such that: 

(i) cp<$<cp+q everywhere in X, 

(ii) $=cp ir? X\lJ{B,s:s~D}, 

(iii) Ii/(x) < $(s) for every s E D and XE B,,\(s). 

Proof: Let 9 be a fixed number with 0 < 9 < 1 and, for each s E D, let 
R, = &/(s). 

As the space X is regular and the set D is strongly discrete, it is possible 
to find, for each SE D, a closed neighbourhood B, of s, disjoint from H, in 
such a way that {BF: SE D} is a discrete family. Of course, it can be also 
assumed that ~J(B,~) c ] - a3, q(s) + A,/21 for every SE D. 

Let, for every s E D, 11,: X + [0, 1 ] be a continuous function such that 
h,‘( 1) = {s} and h,(X\Int( B,Y)) = (0). The existence of such a function is 
proved in a standard way as follows. Since {sJ is a G,-set in X there exists 
{A,,}, a decreasing sequence of open sets, with A, c Int(B,) for all n, such 
that nz=, A, = {s). Since X is a completely regular space there is, for each 
n = 1, 2, . . . . a continuous function g, : X + [0,2 -“I such that g,(s) = 2 Pn 
and g,(X\A,) = (0). Th en, letting h,Y = C,“= , g,, we obtain a continuous 
function with the desired features. 

Now, for each s E D, let “Jo E C(X) be defined by 

Y,(-Y) = Cl - h,(x)1 v(x) + h,(x)[cp(sI + AI 

for every x E X. We have Y,~(s) = q(s) + E,, . Also, if x E B,\ { s} then y,(x) < 
~,~(s); indeed 

Y,(X) G Cl - h,(x)l[cp(s) + WI + h,(.x)[cp(.~) + &,I 

= q(s) + &/2 + h,(x)&/2 < q(s) + & = y,(s). 

As the family {B,: s E D} is discrete and for each s E D we have 7, = cp 
in X\Int(B,), then the function y: X+ R defined by 

Y(X) = dx) if XE X u B,, 
\ St D 

Y(X) = Y,(X) if XEB,~,SED, 

is continuous. Also, it is apparent that y satisfies conditions (ii) and (iii). 
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Moreover, we have y >, cp everywhere in 3’. To see this, note that if .Y E B, 
for some s E D, then 

y(s) = ‘i,(x) = q(x) + [q(s) + I., - q(x)] h,(x) 3 p(x). 

At this point, to obtain the function Ic/ that we are looking for, it is 
enough to put $ =min(y, cp + $r>. Then conditions (i) and (ii) are 
obviously satisfied. To check (iii) note that for every SE D we have 

y(s) = q(s) + A, < q(s) + &f(s), 

SO that $(s) = y(s); hence, for every x E B,‘\ { s} we have 

$(x) d Y(X) <Y(S) = $4~). I 

Now, we come to prove Theorem 1 below, the main result of this section. 
This theorem extends [S, Theorem l] in two directions. First, a more 
general class of spaces is considered here (it should be observed that in a 
metrizable space every discrete set is a countable union of closed discrete 
sets, hence it is a-strongly discrete according to the remark before the 
lemma; it follows that in a metrizable space a set is a-discrete if and 
only if it is o-strongly discrete). Secondly, it is possible here to prescribe 
for the approximating function g both maximum and minimum points 
simultaneously. 

THEOREM 1. Let X he a completely regular topological space. Let S, 
Tc X be two u-strongly discrete disjoint sets such that each singleton {s], 
with S~SU T, is a G,-set in X. 

Then, for every f, E E C(X), with E > 0 ever.ywhere in X, there exists 
g E C(X) such that: 

(j ) I g - f 1 < E everywhere in X, 

(ii) ScWg), Tcm(g). 

Also, if Kc X is any closed set disjoint .from S u T, it is possible for g to 
satisfy 

(jjj) gl, =flh.. 

Proof: As the case S LJ T= 0 is trivial, we can assume without loss of 
generality that S is nonempty. Then we have 

S=D,uDzuD,u . . . . T=D,vD,uD,v . . . . 

where D,, D,, D,, . . . are pairwise disjoint strongly discrete sets and 
Do # 0. We set E, = U”,=, D, for every n = 0, 1, 2, . . . . and Em-, = 0. Also, 
let f-, =f: 

We will show by induction that there exist { fn: n = 0, I, 2, . ..}. a 
sequence in C(X), and {B,: s E SW TJ, a family of closed subsets of X, with 
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s E Int(B,) for every s E S u T, such that the following conditions are 
satisfied for every n = 0, 1, 2, . . . . 

(1 Ll if D, # Qr then {B,: s E D,} is a discrete family, 

PI,, (U(B,:~ED,I)~(K~E,-,)=~, 
(here, of course, the convention U { B,: s E D,,} = @ whenever D, = 0 is 
observed; similar warnings will be omitted in the sequel), 

(3), (-l)“f,~,~(-l)“f,<(-l)“,f,,~,+~/2”+’ everywhere in A’, 

(4),, .fn=Jnpl in x\U(B,: SE D,,f, 

(%I (- 1 Y f,z(x) < (- 1 Y .L,(s) whenever k < n, s E Dk, and 
xe B,\js), 

(6),, if B,nB,.#@ for some VED, and UEE,, ,, then VEB,. 

To prove this, we first note that applying the lemma with D = D,, 
H=K, (p=f-,, and rl= s/2, we obtain the existence of f0 E C(X) and 
{B,: s E Do}, a family of closed subsets of X, with s E Int(B,) for every 
s ED,, such that conditions (l),(6), are satisfied. 

Next, let us assume that functions ,fO, . . . . f, and closed sets B,, SEE,, 
have been found such that conditions (1 )k-(6)k are satisfied for k = 0, . . . . n, 
and construct ,f,, + , and B,, s E Dll+, , such that (1 ),,+ ,-(6),+, hold. 

Decompose Dn+l as D,,+,=D~+,uD~:+~, with Dk+,=D,,+,\, 
IJ{B,:~EE,,) and D~+,=D,+l\D:,+,. 

If D:, +. 1 = 0 we introduce the function h by setting h = f,,. 
If Dl,, #Qr we apply the lemma with D=DL+,, H=Ku 

(UiB,: f~-%l) (th’ is is a closed set by assumptions (1 )k, k = 0, . . . . n), 
cp=(-l)“+‘f,, and yl=~/2”+~. Then there exist h E C(X) and, for each 
.yeD:,+,, B,, a closed neighbourhood of s, such that (replacing h with -h 
if n + 1 is an odd integer): 

(a) (B, : s ED:, + l } is a discrete family, 

(b) (‘JIB,: .=D:,+,))nN4J(R t~E,)))=0, 
(c) (-l)“+‘Jn<(-l)“+’ h<(-1)“+‘f,+s/2”+3 everywhere in A’, 

(d) h=f, in X\U{B,: SEDL+,}, 

(e) (-l)““h(x)<(-l)“+‘h(s)foreverysEDL+, andxEB,Y\{s). 

Now, consider 0:: + , . If Dz+ 1 = 0, then closed sets B,, for SE D,, , , 
have already been constructed; moreover, letting f, + , = h, it is clear, by 
(a)-(e) and (5),, that conditions (l),, i-(6),+ i are fulfilled. 

Hence, suppose that Di+ i # 0 and let { U, : s E Di+ I } be any discrete 
family of open sets with s E U,, for every s E 0: + , . 

For each s E Dz+ 1 denote by A, the set of all points t E E, such that 
s E B,. By conditions (1 )k, k = 0, . . . . n, the set A,y is finite. Let rr = 
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min{ if,(t) -f,(s)l: t E A,}; by condition (5),, T\ is a positive number. Also, 
let C,? denote the union of all sets B, with t E (,!?,\A,) u 0; + , ; by conditions 
( l)k, k = 0, . . . . n, and also (a) if Ok+, # @, C, is a closed set; moreover, 
using condition (b) if D:, + , # a, we have that s $ C,. Then, applying the 
lemma again with D = (s}, H = Ku C, u A,y u (X\U,V) (note that each {t), 
t E A,v, is a closed set since it is a G,s-set and the space X is regular), cp = h 
and q = q,, = min { E/2’, + ‘, TV}, we obtain a function h, E C(X) and a closed 
neighbourhood B,, of .F such that (replacing h, with -!zY if necessary): 

(b’), B.,c U,\(KuC.,uA,), 
(y), (-l)“+‘h<(-l)“+‘h,<(-l)“+‘h+q,everywhere in X, 
(6), h, = h in X\B,,, 

(E),~ (-l)““h,(x)<(-l)“‘,h,Y(s) for every x~B,~\,{s}. 

Do this for each s E DE + , Then closed sets B,, s E D, + , , have been con- 
structed. Moreover, having in mind conditions ( b),V, s E 0: + , , the discrete- 
ness of {U,: s E Dt+ , }, and also conditions (a)-(b) if 0; + , # 0, it is easy 
to check the validity of (1 ), + , , (2), + , , and (6), + , . 

Let f,+ ,: X+ IR be defined as follows: 

.A+ I(X) = h(x) if ~EX\U{B,:~ED~+~}, 

fir + 1 (x) = h.,(x) if XEB,,SED~+,. 

By conditions ( 1 ),, + , and (6),Y, s E 0: + , , the function f,, + , is well defined 
and continuous. Also, using conditions (Y)~, s E 0: + , , and as usual (c) and 
Cd) if Dk+, # 0, it is easy to check that (3),+, and (4), + , are fulfilled. 

Let us show that also (5),+, is satisfied. This will conclude the inductive 
argument. 

Let kdn+ 1, LED,, and XE B,\(s). If k=n+ 1, then the inequality 
(-l)““f,+,(x)<(-l)“+‘JI+,(s) follows from (e) if s~Dh+,, or from 
(s), if sEDt+,. If k<n and x$lJ(B1: LED n+, }, then, using conditions 
(4) n+l, (5),+,, and (2),+,, we have 

Finally, let us consider the case k < n and x E B, for some t E D, + , . By con- 
dition (6), + , we have tEB,, hence tEDz+, and s E A,. We distinguish two 
subcases according to whether ( - 1)” = ( - 1)” + ’ or ( - l)k = ( - 1)“. In the 
first case we have 

(-l)kfn+,(X)=(-l)n+‘h,(x)~ (by (~1,) 

(-l)“+,h,(t)< (by (Y ),) 

(- l)fl+’ h(t)+Y/,<(-l)“+l h(t) + If,*(t) -f,(s)1 = 
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(using (d) if Dk+i #@) 

(- 1 I”+ ‘f,(f) + Ifn(t)-fn(J)l = 
( - 1 )kfn(d + I( - 1 )kfn(t) - (- 1 lkfn(4 = (by (5M 
( - 1 )kf;,(s) = (by(2),+,and(4L+,) 
(-l)kfn+l(S). 

If (-l)k=(-l)‘zr then we have 

(-l)kf,+l(X)=(-l)nh,(x)d (by (Y 1,) 
(-l)“h(x)= (using (d) if O:,+ 1 # @) 

( - 1 )“.frl(x) < (by (5L) 

(- 1 )kf,(.d = (by G’),+, and (4L+,) 

W)“f,+h). 

At this point we are in a position to define the function g that we are 
looking for. Let 

By conditions (3),, n = 0, 1, 2, . . . . the function g is well defined, 
continuous, and satisfies 

everywhere in X, that is condition (j). Moreover, by conditions (2), and 
(4),, n=o, 1, 2, . ..) it is clear that also (jji) is satisfied. 

Let us check (jj). We will show that ( - l)k g(x) < ( - l)k g(s) whenever 
s E Dk and x E B,\ {s}. Of course, this implies (jj ). 

Since g = lim,f, and owing to conditions (2), and (4),, n = k + 1, 
k + 2, . . . . we have fk(s) = fk+ i(s) = ... = g(s). Denote by L the set of all 
integers n=O, 1, 2,... such that (-l)“=(-1)” and XEU(B,:~ED,}. If L 
is a finite set, then, letting v = max L, by conditions (2),, (4),, and (3),, 
n = v + 1, v + 2, . . . . we have (- l)“f,- ,(x) 3 (- l)kf,,(x) for all n > v, hence 
by (5),., 

( - 1 Jk g(x) d ( - 1 )kf”(X) < ( - 1 )“f”b) = ( - 1)” g(s). 

If the set L is infinite, then fix any m E L with m > k and denote by t the 
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element of D, for which x E B,. By (6), we have t E B, and so, by condi- 
tions (5),, n = m, m + 1, . . . . 

(- 1 Tf,(x) = ( - 1 )“‘fi,(x) d ( - 1 )“.l,(~) 

= f - 1 Y./i,(f) < (- 1 T.Li.~) 

for every n >m. But, as above for s, we also have ,f,(t) = 
f,+,(t) = ... = g(t). It follows (- l)k g(x) 6 (- l)!+ g(t) < (- 1 )k g(s). This 
accomplishes the proof. 1 

Now, we present some consequences of Theorem 1. 
Henceforth, given a space X, we will denote by X’ the derived set of X. 

THEOREM 2. Let X be a completely regular space. 
if there exists a a-strongly discrete set F which is a dense subset of Int( X’) 

and such that {x) is a G&-set in Xfor every x E F, then both M(X) and m(X) 
are dense in C(X) endowed with the majorant topology. 

If there exist two disjoint a-strongly discrete sets F, G, both dense subsets 
of Int(X’), such that {x> is a G&-set in X for every x E F u G, then 
M(X) n m(X) is dense in C(X) endowed with the majorant topology. 

Proof: If a set F exists, then we apply Theorem 1 with S = F, T= @ 
and f, E any two functions in C(X), with E > 0 everywhere in X. The corre- 
sponding function g belongs to M(X). Indeed, we have M(g) 3 Fu (X\X’) 
and the last set is dense in X. This proves the density of M(X). To prove 
that also m(X) is dense, it is enough to interchange the roles of F and $3, 
or to use the obvious remark that (regardless of which of two topologies 
is considered for C(X)) there exists a homeomorphism of C(X) onto itself, 
namely f -+ -f, which takes M(X) onto m(X). 

If two sets F, G exist, then we apply Theorem 1 again with S= F, 
T=G. 1 

Theorem 2 yields in particular the following 

COROLLARY 1. Let X be a completely regular space. 
If Int(X’) has a countable dense subset whose points are G,-sets in X, 

then both M(X) and m(X) are dense in C(X) endowed with the majorant 
topology. 

If Int(X’) has two disjoint countable dense subsets whose points are 
G&-sets in X, then M(X) n m(X) is dense in C(X) endowed with the majorant 
topology. 

Proof Observe that any countable set is a-strongly discrete. [ 

Finally, we prove 
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THEOREM 3. Let X he a completely regular space with a a-strong113 
discrete n-base and with a dense subset whose points are G6-sets in X. Then 
M(X) n m(X) is dense in C(X) endowed with the majorant topology. 

Proof. Of course, we can assume that Int(X’) # @, for if Int(X’) = fa, 
then it is obvious that M(X) = m(X) = C(X). 

Let Y be a dense subset of X such that { 4’) is a G,-set in X for every 
~1 E Y. By the regularity of X, each singleton {J’}, with JJ E Y, is also a closed 
set, and consequently every nonempty open subset of Int(X’) meets Y in 
infinitely many points. 

Let J& be a discrete n-base for X. Then yL’ = { VE 22: Vc Int(X’)} is a 
n-base for the subspace Int( X’ ); also we have $ = U ,F=, $ ;t, where each $ ;, 
is a discrete family in X. 

We will construct by induction (F, : n = 1, 2, . . . } and {G,: n = 1, 2, .,. I, 
two sequences of pairwise disjoint subsets of Yn Int(X’), with 
(U,:= , F,,) n (U,;‘= 1 G,,) = 0, such that, for every n = 1, 2, . . . . both F,, 
and G, are contained in U( V: VE “IT,] and meet each VE y;, in one point. 
Then the theorem will follow from Theorem 2 taking F= U,:=, F,, and 
G=U;=, G,. 

To perform the construction, we first choose, for every VE ?‘;, two dis- 
tinct points -Y,,, yV in Yn V, and put F, = (x,: VE Y: ), G, = {y, : VE Vi ). 

Next, let us assume that pairwise disjoint subsets F,, . . . . F,,, G,, . . . . G,, of 
Y n Int( X’) have been found such that, for every i = 1, . . . . n, both F, and G, 
are contained in U( V: VE $ ,j and meet each VE $‘i in one point, and 
construct F,,+, , G,,, ,. 

Owing to the discreteness of 9;) . . . . “I’;), for each VE $; + , there is a non- 
empty open set Q c V which meets F, u u F, u G, u u G,, in finitely 
many points. Hence, by the initial remark, two distinct points x,, yr, can 
be chosen in (Yn V)‘\(F, u ..’ u F,,uG, u ... UC,) for every VE$‘;+,. 
At this point, to complete the inductive step, it is enough to take F,,+ , = 
{.xc: F’E f;+,J, and G,,+l= {J‘,: VE%,+,}. B 

Remark. By the above proof it is clear that in Theorem 3 the assump- 
tion that X has a o-discrete n-base and a dense subset whose points are 
G,-sets in X can be weakened as follows: if Int(X’) # 0, then Int(X’), with 
the relative topology, has a r-base which is a-discrete in X and a dense 
subset whose points are G,-sets. 

2. A CATEGORY RESULT 

In this section we are concerned with the residuality of M(X) in C(X) 
endowed with the topology of uniform convergence. Since C(X) with the 
metric p of uniform convergence is a complete metric space, it is obvious 
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that in this case residuality implies density. Also, by a previous remark (see 
the proof of Theorem 2), it is apparent that M(X) is residual if and only 
if m(X) is; hence M(X) residual implies that also M(X) n m(X) is residual. 

THEOREM 4. Let X be a topological space for which the following condi- 
tion is satisfied: if Int(X’) # a, then Int(X’) with the relative topology has 
a n-base S? which consists of completely metrizable subspaces and which 
moreover is a g-discrete family in X. 

Then M(X) n m(X) is a residual set in C(X) endowed with the topology 
of uniform convergence. 

Proof: Of course we can assume that Int(X’) # @. Also, by the above 
remark, it is enough to prove that M(X) is residual. 

Let % be as in the statement and, for each UE %, let d,, be a complete 
compatible metric on U; we will denote by 6 (:(V) the diameter of a set 
Vc U with respect to this metric. Also, let 49 = U,“= , %!,,,, where every a,, 
is a discrete family in X. 

For every n = 1, 2, . . . . let V, be the set of all families -tr of the form vy- = 
( V,: U E am}, where V, is a nonempty open subset of U for each U E @“. 
Also, for every n = 1, 2, . and k = 1, 2, . . . . let W,,, be the set of all qfl E V,,, 
withIv={V,::UE4&},such that 6.(V,)<l/kforeach UE%“. 

Now, for every n = 1, 2, and 9-c V,, with 9” = {V,: UE %!,,}, let 
A,(v) be the set of all functions f E C(X) with the property: there exists 
r~ > 0 such that sup f( U) 2 sup f( U\V,) + G for every U E %!M (here the 
convention sup 0 = - TC, is observed). We have that A,(w-) is an open 
subset of C(X). To check this, let f be any function in A,(v), so that 
there is a ii > 0 such that sup f( U) > sup f( U\V,) + 6 for every U E a,,. 
We claim that the open ball of C(X) centered at f and with radius 
r =min{i/2, 1) is contained in A,(v). Indeed, from p(f, j’) < r < 1, it 
follows, for every Y c X, 

sup f( Y) 2 sup f( Y) - P(f, 3,3 SUP f ( Y) - 2P(f, 319 

and hence, for every U E @,, , 

whence f E A,(v) since 6 - 2p(f, 3) > ~7 - 2r >, 0. 
Next, for every n = 1, 2, . . . and k = 1, 2, . . . . let 

Bn,, = U{A,(Y): YE W,d 

We will prove that the open set B,,, is dense in C(X). To this aim, given 
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f E C(X) and E >O, we will construct a family FE FvV,,~ and a function 
g E A,(T) such that p( g, f) < E. Consider the family %!L = { UE q,!,,: 
supf(U) < + oo}. If %A = ~3, thenf E A,(Y) for every YE V,,, hence we 
can take g =fand 4 any family in FvV~,~. If %i # @ we proceed as follows. 
Let, for each UE%~%:,, a point xc, and an open set WC; be fixed such that 

and 

- 
X(’ E: WC, w,: c= u, S.(W,,)d l/k 

supf(U)<f(x,)+s/2; 

also, let ‘po: U--f R be a continuous function such that 

(*I fdvudf+E everywhere in U, 

(**I tDL’ =.f in U\W,, 

and cp,(x,) =f(x,)+s. Then, owing to the discreteness of ai,, to condi- 
tion (**) and to the fact that WC,, c U, the function g: X-, R, defined by 

g(x) =f(x) if x#u (U: UE%li:,), 

g(x) = cpu(,y) if xE U, Ue42' II 3 

is easily seen to be continuous. Also, by (*), we have p(g, f) d E. Let 
% = { 8,: UE %,, j be any family in VW,, k such that v,, = W, for every 
U E J&L. Then we have g E A,(p). Indeed; we claim that 

sup g(U) 3 sup g( u\ P,) + E/2 

for every UE !&,. This is obvious if U$ %h, for in this case sup g(U) = 
sup f( U) = + co. If U E 4?;, then the above claim follows from 

sup g(U) 3 g(x,) =f(x,) + s 

3SUpf(U)~E/2~SUpf(U\~iu)+E/2 

>SUp g(u\P,)+ E/2. 

Finally, to complete the proof, we show that M(X) contains a dense 
G&-set in C(X), namely flz= i fiF=, B,+. 

Let ff n:= L nk”= 1 k,k. We have to show that if 52 c X is open and 
nonempty, then QnM(f) # 0. This is obvious if Q\X’ # 0. So, let 
Q c X’, hence Q c Int(X’), and, replacing Q with a nonempty open subset 
if necessary, let the condition sup f(Q) < + co be satisfied. As +Y is a z-base 
for Int(X’), there exist an integer n* and a set U* E 43,,. such that U* c 52. 
As the function f is in n,Z=, Bne,k, then for every k = 1, 2, . . . . there is a 
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nonempty open set V, c U* such that 6,*( Vk) < l/k and supf(U*) > 
sup,f( U*\ Vk). The family { Vk : k = 1, 2, i has the finite intersection 
property because, for every k = 1, 2, . . . . the inequalities 

supf(U*)>supf’(U*\v,), i=l k, > ..., 

imply 

suPf(U*)>suPf 
( 

; (U*\v,) 
I= I ) 

= SUP.f (u*\,(!, V)>? 

hence fif=, Vi cannot be empty. Since (U*, d,,) is a complete metric 
space, then, by a version of the Cantor theorem [2, p. 337. - 
Theorem 4.3.101, n,‘-= I (U* n I’,) is nonempty. Let p be a point in 
nF=, (U* nK). We will prove that Pam and this will conclude the 
proof. 

We first note that .f’(~) = supf(U*). This is proved by contradiction as 
follows. Assume that a point q E U* exists such that f(q) >f(p). and let W 
be an open neighborhood of p, W c U*, such that f(q) >.f(y) for every 
y E W. Since 6,,( Vk) + 0 as k -+ x and p E q, we have that, for k large 
enough, Vk c W, hence sup f( Vk) <f(q), whence the contradiction 
supf(U*)=supf(U*\V,). 

Next, we show that ,flp) >f(x) for every .Y E U*\{ p}. Indeed, if x # p, 
then x4 V, if k is large enough, and so 

It is worth pointing out explicitly the following particular case of 
Theorem 4. 

COROLLARY 2. Let X be a completely metrizable space. Then 
M(X) n m(X) is a residual set in C(X) endowed with the topology of uniform 
convergence. 

Proof Let W be a a-discrete base for X and, if Int(X’) # 0, let @ = 
(B n Int(X’): BE B}. Then the assumptions of Theorem 4 are satisfied. 1 

REFERENCES 

1. V. DROBOT AND M. MORAYNE, Continuous functions with a dense set of proper local 
maxima, Amer. Math. Monthly 92 (1985), 209-211. 

2. R. ENGELKING, “General Topology,” PWN, Warsaw. 1977. 



PROPER LOCAL EXTREMA OF CONTINUOUS FUNCTIONS 571 

3. V. KELAK, On strict local extrema of differentiable functions, Real. Anal. Exchungr 6, No. 2 
(198&1981), 242-244. 

4. E. E. POSEY AND J. E. VAUGHAN, Functions with a proper local maximum in each interval, 
Amer. Muth. Monrhl.v 90 (1983). 281-282. 

5. A. VILLAN, Functions with a dense set of proper local maximum points, Proc. Amer. Ma/h. 
Sot. 94 (1985), 353-359. 

6. S. WILLARD, “General Topology,” Addison-Wesley, Reading, MA, 1970. 
7. 2. ZALCWASSEK, Sur le fonctions de Kopcke. Prow ,Ma/. Fir. 35 (1927- 1928). 57-99. 


