226 research outputs found

    Apoyo meteorológico a la 32ª edición de la Copa del América

    Get PDF

    Distribución probabilística de los extremos globales de precipitación.

    Get PDF
    Las precipitaciones máximas mundiales siguen un patrón matemático de distribución temporal, con un índice de precipitación (n) de máxima eficiencia entre el origen convectivo y advectivo. Habitualmente, se estima que la frecuencia de dichas precipitaciones es extraordinariamente baja, según la estadística de cada estación. Sin embargo en la isla de La Réunion se han registrado 6 récords globales desde 1958, lo cual supone una media aproximada de un récord cada 9 años. En este trabajo proponemos un método para estimar la probabilidad de retorno para conjuntos de estaciones, basado en una función potencial de la distribución de probabilidad y de la distribución temporal de la precipitación. Los resultados obtenidos muestran que los récords globales presentan una alta similitud entre sí, con una precipitación equivalente en un minuto de aproximadamente 49 ± 2 mm. Sin embargo, existen algunas diferencias; por ejemplo, el récord de 2007 (4869 mm en 4 días) presenta un valor estimado de 64 mm en un minuto. Finalmente se propone una curva de Intensidad-Duración-Frecuencia para los récords mundiales, estimándose que el retorno esperado para el actual récord es del orden de 100 años, considerando el conjunto de las estaciones que han registrado los récords. The global maximum precipitations behave according to a mathematical pattern of time distribution, with a precipitation index (n) indicating maximum effi ciency between the convective and advective origin. Usually, it is estimated that the frequency of said rainfall is extremely low, according to the statistics of each station. However, in the island of La Réunion there have been recorded 6 global records since 1958, which represents a rate of around one record every 9 years. We propose a method for estimating the probability of return for sets of stations, based on a power function of the probability distribution and temporal distribution of rainfall. The results indicate that global records show a high similarity among themselves, with an equivalent precipitation in one minute of approximately 49 ± 2 mm. However, there are some differences. For example, the record of 2007 (4869 mm in 4 days) has an estimated value of 64 mm in one minute. Finally, we introduce a curve of intensity-duration-frequency for world records, estimated that the expected return for the current record is around 100 years, considering the set of the 18 stations that have measure extreme registers

    Centro especializado en aeronáutica: operativo y desarrollo

    Get PDF
    Presentación realizada en el Foro de Usuarios Aeronáuticos, celebrado el 11 de diciembre de 2012 en los Servicios Centrales de AEMET en Madri

    AEMET como proveedor del Servicio de Vigilancia y Predicción del Clima

    Get PDF

    AEMET_OPEN-DATA

    Get PDF
    Presentación realizada para la Jornada AEMET OpenData "Descubre el poder de los datos abiertos" que se celebró el 13 de diciembre de 2016 en la sede central de AEMET. En esta jornada AEMET presentó el sistema "AEMET OpenData", que permite la difusión y la reutilización de la información meteorológica y climatológica de la Agencia

    Estudio climático del exponente “n” de las curvas IDF: aplicación para la Península Ibérica

    Get PDF
    El análisis de las precipitaciones máximas suele llevarse a cabo mediante curvas IDF (Intensidad-Duración-Frecuencia), que a su vez pueden expresarse como curvas IMM (Intensidades Medias Máximas). En este trabajo, hemos desarrollado un índice “n”, definido a partir del exponente que se obtiene de ajustar las curvas climáticas IDF a las curvas IMM. Dicho índice proporciona información sobre el modo en que se alcanzan las precipitaciones máximas en una determinada zona clim´atica, atendiendo a la distribuci´on temporal relativa de las intensidades m´aximas. A partir del an´alisis clim´atico del ´ındice “n”, en la Pen´ınsula Ib´erica se pueden distinguir grandes zonas caracterizadas por m´aximos de lluvia de origen m´as tormentoso (interior peninsular) y ´areas caracterizadas por m´aximos de lluvia de origen m´as frontal (suroeste, litoral atl´antico y litoral mediterr´aneo). Adem´as, estas ´areas pueden subdividirse m´as espec´ıficamente seg´un la persistencia de las precipitaciones m´[email protected]

    Use of raw and acidified biochars as constituents of growth media for forest seedling production

    Full text link
    [EN] In plant nurseries devoted to the propagation of shrubs and trees for landscaping, gardening or forestry it is first concern to produce robust seedlings which resist the stress of transplanting to soil. The selection of appropriate growth media is crucial. Biochar, the product of pyrolysis of organic matter, has been suggested as a new organic amendment for soil or for soilless growth media. Biochar is usually strongly alkaline. We studied the possibility of acidifying biochar with nitric and phosphoric acids. The effects of raw and acidified biochars in peat-based substrates on rooting and growth of cuttings of Rosmarinus officinalis and in sandy soil-based substrates on growth of Phillyrea angustifolia seedlings were compared. The physical and chemical characteristics of the growth media, and the growth and nutrient content of seedlings were analysed. Results showed that biochar acidification with nitric and phosphoric acids improves the pH and enriches the biochar with N and P without excessively increasing electrical conductivity. However, a column experiment showed that nitrate was readily leached whilst phosphate was tightly retained by biochar, which questioned the practical availability of these nutrients to plants. The agronomical assays showed that both raw biochar and acidified biochar improved rooting and growth of Rosmarinus cuttings. In Phillyrea, however, the acidified biochar did not affect plant growth whilst the raw biochar gave satisfactory results both for shoot and root growth. Results led to the conclusion that biochar without further treatment might be successfully used as growth medium constituent, even at large proportions, both in organic and in mineral substrates.We would like to thank L Albufera Natural Park and José Almudever from TENISPLANT S.L. for providing us with the plant material and for the use of their premises. We also would like to thank student Mauro Payá for his valuable technical assistance.Fornes Sebastiá, F.; Belda Navarro, RM. (2019). Use of raw and acidified biochars as constituents of growth media for forest seedling production. New Forests. 50(6):1063-1086. https://doi.org/10.1007/s11056-019-09715-yS10631086506Abad M, Noguera P, Bures S (2001) National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Biores Technol 77:197–200Abad M, Fornes F, Carrión C, Noguera V, Noguera P, Maquieira A, Puchades R (2005) Physical properties of various coconut coir dusts compared to peat. HortScience 40:2138–2144Akhtar SS, Andersen MN, Liu F (2014) Biochar enhances yield and quality of tomato under reduced irrigation. Agric Water Manag 138:37–44Alexander PD, Bragg NC, Meade R, Padelopoulos G, Watts O (2008) Peat in horticulture and conservation: the UK response to a changing world. Mires Peat 3:1–10Altland JE, Locke JC (2012) Biochar affects macronutrient leaching from a soilless substrate. HortScience 47:1136–1140Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18Bargmann I, Rilling MC, Buss W, Kruse A, Kuecke M (2013) Hydrocahr and biochar effects on germination of spring barley. J Agron Crop Sci 199:360–373Bargmann I, Martens R, Rilling MC, Kruse A, Kücke M (2014) Hydrochar amendment promotes microbial immobilization of mineral nitrogen. J Plant Nutr Soil Sci 177:59–67Belda RM, Mendoza-Hernández D, Fornes F (2013) Nutrient-rich compost versus nutrient-poor vermicomposts as growth media for ornamental plant production. J Plant Nutr Soil Sci 176:827–835Belda RM, Lidón A, Fornes F (2016) Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Ind Crops Prod 94:132–142Bigelow CA, Bowman DC, Cassel DK (2001) Nitrogen leaching in sand-based rootzones amended with inorganic soil amendments and sphagnum peat. J Am Soc Hort Sci 126:151–156Blok C, De Kreij C, Baas R, Weber G (2008) Analytical methods used in soilless cultivation. In: Raviv M, Lieth JH (eds) Soilless culture: theory and practice. Elsevier, LondonBunt AC (1988) Media and mixes for container-grown plants: a manual on the preparation and use of growing media for pot plants, 2nd edn. Unwin Hyman, LondonCarmona E, Abad M (2008) Aplicación del compost en viveros y semilleros. In: Moreno J, Moral R (eds) Compostaje. Ed Mundi-Prensa, Madrid, pp 397–424Carrión C, García de la Fuente R, Fornes F, Puchades R, Abad M (2008) Acidifying compost from vegetable crop wastes to prepare growing media for containerized crops. Compost Sci Util 16:20–29Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 67–84Cho MS, Meng L, Song JH, Han SH, Bae K, Park BB (2017) The effects of biochars on the growth of Zelkova serrata seedlings in a containerized seedling production system. For Sci Technol 13:25–30Cleary J, Roulet NT, Moore TR (2005) Greenhouse gas emissions from Canadian peat extraction, 1990–2000: a life-cycle analysis. Ambio 34:456–461Di Lonardo S, Baronti S, Primo Vaccari F, Albanese L, Battista P, Miglietta F, Bacci L (2017) Biochar-based nursery substrates: the effect of peat substitution on reduced salinity. Urban For Urban Green 23:27–34Doan TT, Ngo PT, Rumpel C, Nguyen BV, Jouquet P (2013) Interactions between compost, vermicompost and earthworms influence plant growth and yield: a one-year greenhouse experiment. Sci Hortic 160:148–154Dumroese RK, Pinto JR, Heiskanen J, Tervahauta A, McBurney KG, Page-Dumroese DS, Englund K (2018) Biochar can be a suitable replacement for sphagnum peat in nursery production of Pinus ponderosa seedlings. Forests 9:232. https://doi.org/10.3390/f9050232Dunlop SJ, Camps-Arbestain M, Bishop PA, Wargent JJ (2015) Closing the loop: use of biochar produced from tomato crop green waste as a substrate for soilless, hydroponic tomato production. HortScience 50:1572–1581EN- European Standards. Soil improvers and growing media. European Committee for Standardization (CEN), Brussels, Belgium [EN 13037 (1999) Determination of pH pp 11] [EN 13038 (1999) Determination of Electrical Conductivity pp 13] [EN 13041 (1999) Determination of Physical Properties. Dry Bulk Density, Air Volume, Water Volume, Shrinkage Value and Total Pore Space pp 25] [EN 13652 (2001) Extraction of Water Soluble Nutrients and Elements pp 19] [EN 15428 (2007) Determination of Particle Size Distribution pp 21]Forbes MS, Raison RJ, Skjemstad JO (2006) Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci Total Environ 370:190–206Fornes F, Belda RM (2017) Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars. J Environ Manag 191:237–243Fornes F, Belda RM (2018) Biochar versus hydrochar as growth media constituents for ornamental plant cultivation. Sci Agric 75:304–312Fornes F, Belda RM, Carrión C, Noguera V, García-Agustín P, Abad M (2007) Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Sci Hotic 113:52–59Fornes F, Carrión C, García de la Fuente R, Puchades R, Abad M (2010) Leaching composted lignocellulosic wastes to prepare container media: feasibility and environmental concerns. J Environ Manag 91:1747–1755Fornes F, Mendoza-Hernández D, Belda RM (2013) Compost versus vermicompost as substrate constituents for rooting shrub cuttings. Spanish J Agric Res 11:518–528Fornes F, Belda RM, Lidón A (2015) Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. J Clean Prod 86:40–48Fornes F, Belda RM, Fernández de Córdova P, Cebolla-Cornejo J (2017) Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production. J Sci Food Agric 97:3675–3684Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H (2014) Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS One 9:e113888Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633Gastón A, Soriano C, Gómez-Miguel V (2009) Lithologic data improve plant species distribution models based on coarse-grained occurrence data. Investigación Agraria: Sistemas y Recursos Forestales 18:42–49Gucci R, Aronne G, Lombardini L, Tattiani M (1997) Salinity tolerance of Phillyrea species. New Phytol 135:227–234Gwenzi W, Nyambishi TJ, Chaukura N, Mapope N (2018) Synthesis and nutrient release patterns of a biochar-based N-P–K slow-release fertilizer. Int J Environ Sci Technol 15:405–414Haase DL, Rose R (1995) Vector analysis and its use for interpreting plant nutrient shifts in response to silvicultural treatments. For Sci 41:54–66Haefele SM, Yonboon Y, Wongboon W, Amarante S, Maarifat AA, Pfeiffer EM, Konoblauch C (2011) Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res 121:430–440Harfouche A, Baoune N, Merazga H (2007) Main and interaction effects of factors on softwood cutting of white poplar (Populus alba L.). Silvae Genet 56:287–294Headlee WL, Brewer CE, Hall RB (2014) Biochar as substitute for vermiculite in potting mix for hybrid poplar. Bioenerg Res 7:120–131Joseph S, Kammann CI, Shepherd JG, Conte P, Schmidt HP, Hagemann N, Rich AM, Marjo CE, Allen J, Munroe P, Mitchel DRG, Donne S, Spokas K, Graber ER (2018) Microstructural and associated chemical changes during the composting of a high temperature biochar: mechanisms for nitrate, phosphate and other nutrient retention and release. Sci Total Environ 618:1210–1223Kammann C, Ratering S, Eckhard C, Müller C (2012) Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J Environ Qual 41:1052–1066Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442Lee JA (1998) The calcicole—calcifuge problem revisited. In: Callow JA (ed) Advances in botanical research. Academic Press Haranhan, LA, pp 1–30Lehmann J, Joseph S (2009) Biochar for enivronmental management: an Introduction. In: Lehmann J, Joseph S (eds) Biochar for enivronmental management. Science and Technology, Earthscan, London, pp 1–12Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizaõ FJ, Petersen J, Neves G (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730Lucia De, Cristiano G, Vecchietti L, Bruno L (2013) Effect of different rates of composted organic amendment on urban soil properties, growth and nutrient status of three Mediterranean native hedge species. Urban Forest Urban Green 12:537–545Maher M, Prasad M, Raviv M (2008) Organic soilless media components. In: Raviv M, Lieth JH (eds) Soilless culture: theory and practice. Elsevier, London, pp 459–504Malby E, Proctor MCF (1996) Peatlands in biosphere. Peatlands: their nature and role in the biosphere. In: Lappalainen E (ed) Global peat resources. International Peat Society, Jyskä, pp 11–19Maronek DM, Studebaker D, Oberly B (1985) Improving media aeration in liner and container production. Comb Proc Int Plant Prop Soc 35:591–597Martikainen PJ (1996) Peatlands in biosphere. The fluxes of greenhouse gases CO2, CH4 and N2O in northern peatlands. In: Lappalainen E (ed) Global peat resources. International Peat Society, Jyskä, pp 29–36Mendez A, Paz-Ferreiro J, Gil E, Gasco G (2015) The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Sci Hortic 193:225–230Mendoza-Hernández D, Fornes F, Belda RM (2014) Compost and vermicompost of horticultural waste as substrates for cutting rooting and growth of rosemary. Sci Hortic 178:192–202Mills HA, Jones JB Jr (1996) Plant analysis handbook II. A practical sampling, preparation, analysis, and interpretation guide. Micro Macro Publishing, AthensMukherjee A, Zimmerman AR (2013) Organic carbon and nutrient release from a range of laboratory produced biochars and biochar soil mixtures. Geoderma 193–194:122–130Ogaya R, Peñuelas J, Martínez-Vilalta J, Mangirón M (2003) Effect of droutgh on diameter increment of Querqus Ilex, Phillyrea latifolia and Arbutus unedo in a holm oak forest of NE Spain. For Ecol Manag 180:175–184Ojanen P, Minkkinen K, Penttilä T (2013) The current greenhouse gas impact of forestry-drained boreal peatlands. For Ecol Manag 289:201–208Omil B, Piñeiro V, Merino A (2013) Soil and tree responses to the application ofwood ash containing charcoal in two soils with contrasting properties. For Ecol Manag 295:199–212Otani T, Ae N (2001) Interspecific differences in the role of root exudates in phosphorous acquisition. In: Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition. New perspectives. Springer, Tokio, pp 71–100Peng X, Ye LL, Wang CH, Zhou H, Sun B (2011) Temperature-and-duration-dependent rice staw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res 112:159–166Pérez-Bejarano A, Mataix-Solera J, Zornoza R, Guerrero C, Arcenegui V, Mataix-Beneyto J, Cano-Amat S (2010) Influence of plant species of physical, chemical and biological soil properties in a Mediterranean forest soil. Eur J For Res 129:15–24Peterson JC (1981) Modify your pH perspective. Flor Rev 169:34–35, 92 and 94Petruccelli R, Bonetti A, Traversi ML, Faraloni C, Valagussa M, Pozzi A (2015) Influence of biochar application on nutritional quality of tomato (Lycopersicon sculentum). Crop Past Sci 66:747–755Pryce S (1991) The peat alternatives manual. A guide for the professional horticulturist and landscaper. Friends of the Earth, LondonRandall PJ, Hayes JE, Hocking PJ, Richardson AE (2001) Root exudates in phosphorous acquisition by plants. In: Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition. New Perspectives. Springer, Tokio, pp 71–100Sáez JA, Belda RM, Bernal MP, Fornes F (2016) Biochar improves agro-environmental aspects of pig slurry compost as a substrate for crops with energy and remediation uses. Ind Crops Prod 94:97–106Sanchís E, Rubio JL, Mansanet J (1986) Soils and vegetation in Mount Dehesa de la Albufera (Valencia) (in Spanish). Rev Agroquim Tecnol Alimentos 26:435–450Sarauer J, Coleman MD (2018) Biochar as a growing media component for containerized production 1 of Douglas-fir. Can J For Res 48:581–588Schmilevski G (2009) Growing medium constituents used in the EU. Acta Hortic 81:33–46Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989Tate HT, Page T (2018) Cutting propagation of Santalum austrocaledonicum: the effect of genotype, cutting source, cutting size, propagation medium, IBA and irradiance. New For 49:551–570Thomas SC, Gale N (2015) Biochar and forest restoration: a review and meta-analysis of tree growth responses. New For 46:931–946Xu X, Kan Y, Zhao L, Cao X (2016) Chemical transformation of CO2 during its capture by waste biomass derived biochars. Environ Pollut 213:533–540Yao C, Joseph S, Li L, Pan G, Lin Y, Munroe P, Pace B, Taherymoosavi S, Van Zwieten L, Thomas T, Nielsen S, Ye J, Donne S (2015) Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality. Pedosphere 25:703–712Zhang L, Sun X, Tian Y, Gong X (2014) Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci Hortic 176:70–7

    Tianfenicol no tratamento do cancroide. Estudo de 1.128 casos

    Get PDF
    Thiamphenicol, an aminic derivate of hydrocarbilsulfonil propandiol, was used for the treatment of 1,171 chancroid bearing patients. Each patient was medicated with 5.0 g of granulated thiamphenicol, orally, in a single dose, and was reevaluated 3, 7 and 10 days after the treatment. Ten patients (0.89%) did not respond to the proposed treatment. 133 patients presented healed ulcers after 3 days of treatment, 976 patients healed chancres on the seventh day after the treatment, and 39 patients took 10 days to present healed chancres. The results of this study indicate that the rate of patients that were cured, the low incidence of side effects, and the practicality of administration make of thiamphenicol an excellent choice for the treatment of chancroid.O tiamfenicol, derivado amínico do hidrocarbilsulfonil propandiol, foi utilizado para o tratamento de 1.171 pacientes portadores de cancróide. Cada paciente foi medicado com 5,0 g de tianfenicol granulado, via oral e em dose única, sendo reavaliados após 3, 7 e 10 dias do tratamento. Dez pacientes (0,89%) não responderam à terapêutica proposta; 133 pacientes apresentaram úlceras cicatrizadas após 3 dias do tratamento; 976 pacientes apresentaram lesões cicatrizadas no sétimo dia após o tratamento e, 39 pacientes levaram 10 dias para apresentarem lesões cicatrizadas. Os resultados deste estudo indicam que o índice de cura, a baixa incidência de efeitos colaterais, e a praticidade de administração fazem hoje do tianfenicol uma excelente escolha no tratamento do cancróide

    Evaluación continua a través del trabajo autónomo del estudiante

    Get PDF
    Durante el curso académico 2014-2015 se han introducido distintas mejoras en la metodología docente y en el sistema de evaluación de la asignatura Fundamentos Matemáticos de la Ingeniería II del primer curso del Grado en Ingeniería Civil de la Universidad de Alicante. Su objetivo es reducir el tiempo dedicado a la clase magistral en el desarrollo de la asignatura, en aras de fomentar la participación del alumnado. También se pretende conseguir un mayor aprovechamiento de las clases prácticas mediante la resolución autónoma de diversos ejercicios y problemas por parte de los alumnos, contando con la supervisión del profesorado. Este último aspecto es fundamental en las materias propias de las Matemáticas. En esta comunicación detallaremos las acciones específicas adoptadas con estos fines, tanto en la dinámica de las clases como en la forma de evaluación. Así mismo, se realizará un análisis cuantitativo y cualitativo de los resultados alcanzados y de las percepciones que profesores y alumnos tienen sobre los cambios introducidos
    corecore