328 research outputs found

    Probing non-standard gravity with the growth index: a background independent analysis

    Full text link
    Measurements of the growth index γ(z)\gamma(z) provide a clue as to whether Einstein's field equations encompass gravity also on large cosmic scales, those where the expansion of the universe accelerates. We show that the information encoded in this function can be satisfactorily parameterized using a small set of coefficients γi\gamma_i in such a way that the true scaling of the growth index is recovered to better than 1%1\% in most dark energy and dark gravity models. We find that the likelihood of current data is maximal for γ0=0.74±0.44\gamma_0=0.74\pm 0.44 and γ1=0.01±0.46\gamma_1=0.01\pm0.46, a measurement compatible with the Λ\LambdaCDM predictions. Moreover data favor models predicting slightly less growth of structures than the Planck LambdaCDM scenario. The main aim of the paper is to provide a prescription for routinely calculating, in an analytic way, the amplitude of the growth indices γi\gamma_i in relevant cosmological scenarios, and to show that these parameters naturally define a space where predictions of alternative theories of gravity can be compared against growth data in a manner which is independent from the expansion history of the cosmological background. As the standard Ω\Omega-plane provides a tool to identify different expansion histories H(t)H(t) and their relation to various cosmological models, the γ\gamma-plane can thus be used to locate different growth rate histories f(t)f(t) and their relation to alternatives model of gravity. As a result, we find that the Dvali-Gabadadze-Porrati gravity model is rejected with a 95%95\% confidence level. By simulating future data sets, such as those that a Euclid-like mission will provide, we also show how to tell apart LambdaCDM predictions from those of more extreme possibilities, such as smooth dark energy models, clustering quintessence or parameterized post-Friedmann cosmological models.Comment: 29 pages, 21 figure

    Improving the modelling of redshift-space distortions - II. A pairwise velocity model covering large and small scales

    Get PDF
    We develop a model for the redshift-space correlation function, valid for both dark matter particles and halos on scales >5h1>5\,h^{-1}Mpc. In its simplest formulation, the model requires the knowledge of the first three moments of the line-of-sight pairwise velocity distribution plus two well-defined dimensionless parameters. The model is obtained by extending the Gaussian-Gaussianity prescription for the velocity distribution, developed in a previous paper, to a more general concept allowing for local skewness, which is required to match simulations. We compare the model with the well known Gaussian streaming model and the more recent Edgeworth streaming model. Using N-body simulations as a reference, we show that our model gives a precise description of the redshift-space clustering over a wider range of scales. We do not discuss the theoretical prescription for the evaluation of the velocity moments, leaving this topic to further investigation.Comment: 18 pages, 10 figures, published in MNRA

    Accurate fitting functions for peculiar velocity spectra in standard and massive-neutrino cosmologies

    Get PDF
    We estimate the velocity field in a large set of NN-body simulations including massive neutrino particles, and measure the auto-power spectrum of the velocity divergence field as well as the cross-power spectrum between the cold dark matter density and the velocity divergence. We perform these measurements at four different redshifts and within four different cosmological scenarios, covering a wide range in neutrino masses. We find that the nonlinear correction to the velocity power spectra largely depend on the degree of nonlinear evolution with no specific dependence on the value of neutrino mass. We provide a fitting formula, based on the value of the r.m.s. of the matter fluctuations in spheres of 8h18h^{-1}Mpc, describing the nonlinear corrections with 3\% accuracy on scales below k=0.7  hk=0.7\; h Mpc1^{-1}.Comment: 8 pages, 5 figures, accepted by A&A, typos corrected in equation 1

    Measuring the growth of matter fluctuations with third-order galaxy correlations

    Full text link
    Measurements of the linear growth factor DD at different redshifts zz are key to distinguish among cosmological models. One can estimate the derivative dD(z)/dln(1+z)dD(z)/d\ln(1+z) from redshift space measurements of the 3D anisotropic galaxy two-point correlation ξ(z)\xi(z), but the degeneracy of its transverse (or projected) component with galaxy bias bb, i.e. ξ(z) D2(z)b2(z)\xi_{\perp}(z) \propto\ D^2(z) b^2(z), introduces large errors in the growth measurement. Here we present a comparison between two methods which break this degeneracy by combining second- and third-order statistics. One uses the shape of the reduced three-point correlation and the other a combination of third-order one- and two-point cumulants. These methods use the fact that, for Gaussian initial conditions and scales larger than 2020 h1h^{-1}Mpc, the reduced third-order matter correlations are independent of redshift (and therefore of the growth factor) while the third-order galaxy correlations depend on bb. We use matter and halo catalogs from the MICE-GC simulation to test how well we can recover b(z)b(z) and therefore D(z)D(z) with these methods in 3D real space. We also present a new approach, which enables us to measure DD directly from the redshift evolution of second- and third-order galaxy correlations without the need of modelling matter correlations. For haloes with masses lower than 101410^{14} h1h^{-1}M_\odot, we find 1010% deviations between the different estimates of DD, which are comparable to current observational errors. At higher masses we find larger differences that can probably be attributed to the breakdown of the bias model and non-Poissonian shot noise.Comment: 24 pages, 20 figures, 2 tables, accepted for publication in MNRA

    COVMOS: a new Monte Carlo approach for galaxy clustering analysis

    Full text link
    We validate the COVMOS method introduced in Baratta et al. (2019) allowing for the fast simulation of catalogues of different cosmological field tracers (e.g. dark matter particles, halos, galaxies, etc.). The power spectrum and one-point probability distribution function of the underlying tracer density field are set as inputs of the method and are arbitrarily chosen by the user. In order to evaluate the validity domain of COVMOS at the level of the produced two-point statistics covariance matrix, we choose to target these two input statistical quantities from realistic NN-body simulation outputs. In particular, we perform this cloning procedure in a Λ\LambdaCDM and in a massive neutrino cosmologies, for five redshifts in the range z[0,2]z\in[0,2]. First, we validate the output real-space two-point statistics (both in configuration and Fourier space) estimated over 5,0005,000 COVMOS realisations per redshift and per cosmology, with a volume of 1 [Gpc/h]31\ [\mathrm{Gpc}/h]^3 and 10810^8 particles each. Such a validation is performed against the corresponding NN-body measurements, estimated from 50 simulations. We find the method to be valid up to k0.2h/k\sim 0.2h/Mpc for the power spectrum and down to r 20r~\sim 20 Mpc/h/h for the correlation function. Then, we extend the method by proposing a new modelling of the peculiar velocity distribution, aiming at reproducing the redshift-space distortions both in the linear and mildly non-linear regimes. After validating this prescription, we finally compare and validate the produced redshift-space two-point statistics covariance matrices in the same range of scales. We release on a public repository the Python code associated with this method, allowing the production of tens of thousands of realisations in record time. COVMOS is intended for any user involved in large galaxy-survey science requiring a large number of mock realisations

    REPS: REscaled Power Spectra for initial conditions with massive neutrinos

    Get PDF
    REPS (REscaled Power Spectra) provides accurate, one-percent level, numerical simulations of the initial conditions for massive neutrino cosmologies, rescaling the late-time linear power spectra to the simulation initial redshif

    Energetics of a black hole: constraints on the jet velocity and the nature of the X-ray emitting region in Cyg X-1

    Full text link
    We investigate the energetics of the jet and X-ray corona of Cyg X-1. We show that the current estimates of the jet power obtained from Halpha and [O III] measurements of the optical nebula surrounding the X-ray source allow one to constrain the bulk velocity of the jet. It is definitely relativistic (v >0.1c) and most probably in the range (0.3-0.8)c. The exact value of the velocity depends on the accretion efficiency. These constraints are obtained independently of, and are consistent with, previous estimates of the jet bulk velocity based on radio measurements. We then show that the X-ray emission does not originate in the jet. Indeed, the energy budget does not allow the corona to be ejected to infinity at relativistic speed. Rather, either a small fraction of the corona escapes to infinity, or the ejection velocity of the corona is vanishingly low. Although the corona could constitute the jet launching region, it cannot be identified with the jet itself. We discuss the consequences for various X-ray emission models.Comment: 9 pages, 4 figures, to appear in MNRA

    Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease

    Get PDF
    Background & Aims: Obesity-associated inflammation is a key player in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the role of macrophage scavenger receptor 1 (MSR1, CD204) remains incompletely understood. Methods: A total of 170 NAFLD liver biopsies were processed for transcriptomic analysis and correlated with clinicopathological features. Msr1(-/-) and wild-type mice were subjected to a 16-week high-fat and high-cholesterol diet. Mice and ex vivo human liver slices were treated with a monoclonal antibody against MSR1. Genetic susceptibility was assessed using genome-wide association study data from 1,483 patients with NAFLD and 430,101 participants of the UK Biobank. Results: MSR1 expression was associated with the occurrence of hepatic lipid-laden foamy macrophages and correlated with the degree of steatosis and steatohepatitis in patients with NAFLD. Mice lacking Msr1 were protected against diet-induced metabolic disorder, showing fewer hepatic foamy macrophages, less hepatic inflammation, improved dyslipidaemia and glucose tolerance, and altered hepatic lipid metabolism. Upon induction by saturated fatty acids, MSR1 induced a pro-inflammatory response via the JNK signalling pathway. In vitro blockade of the receptor prevented the accumulation of lipids in primary macrophages which inhibited the switch towards a proinflammatory phenotype and the release of cytokines such as TNF-alpha Targeting MSR1 using monoclonal antibody therapy in an obesity-associated NAFLD mouse model and human liver slices resulted in the prevention of foamy macrophage formation and inflammation. Moreover, we identified that rs41505344, a polymorphism in the upstream transcriptional region of MSR1, was associated with altered serum triglycerides and aspartate aminotransferase levels in a cohort of over 400,000 patients. Conclusions: Taken together, our data suggest that MSR1 plays a critical role in lipid-induced inflammation and could thus be a potential therapeutic target for the treatment of NAFLD. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is a chronic disease primarily caused by excessive consumption of fat and sugar combined with a lack of exercise or a sedentary lifestyle. Herein, we show that the macrophage scavenger receptor MSR1, an innate immune receptor, mediates lipid uptake and accumulation in Kupffer cells, resulting in liver inflammation and thereby promoting the progression of NAFLD in humans and mice. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver.Peer reviewe
    corecore