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ABSTRACT

We estimate the velocity field in a large set of N-body simulations including massive neutrino particles, and measure the auto-power
spectrum of the velocity divergence field as well as the cross-power spectrum between the cold dark matter density and the velocity
divergence. We perform these measurements at four different redshifts and within four different cosmological scenarios, covering a
wide range in neutrino masses. We find that the nonlinear correction to the velocity power spectra largely depends on the degree of
nonlinear evolution with no specific dependence on the value of neutrino mass. We provide a fitting formula based on the value of
the r.m.s. of the matter fluctuations in spheres of 8h−1Mpc, describing the nonlinear corrections with 3% accuracy on scales below
k = 0.7 h Mpc−1.
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1. Introduction

The analysis of the large-scale structure of the universe provides
crucial information on the evolution of the background matter
density and its perturbations (see, e.g., Bernardeau et al. 2002;
Bassett & Hlozek 2010; Weinberg et al. 2013). In particular,
analyses of cosmological probes sensitive to different cosmic
epochs could lead to an explanation of the mysterious late-time
acceleration of cosmic expansion (e.g., Amendola et al. 2018).
At the same time, large-scale structure is sensitive to the de-
tails of the standard model of particle physics, providing upper
bounds on the neutrino mass scale (see, e.g., Lesgourgues & Pas-
tor 2006).

Measured redshifts, which are used to estimate galaxy dis-
tances, are affected by galaxy peculiar velocities generated by
the growth of cosmological matter perturbations. Their line-
of-sight component combines with the cosmological expansion,
systematically modifying the derived galaxy distances and gen-
erating what are known as redshift space distortions (RSD). This
effect turns the amplitude and isotropy of redshift-space cluster-
ing statistics into a sensitive probe of the linear growth rate of
structure f = d ln D/d ln a (Kaiser 1987).

Combining measurements of the expansion history H(z) and
the growth rate of structure f can evidence deviations from
the standard theory of gravity, that is, General Relativity. This
(Guzzo et al. 2008) has led to renewed interest in RSD over the
past decade (see e.g., Sánchez et al. 2017; Pezzotta et al. 2017,
for the most recent analyses and a summary of previous results).
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Extracting the linear growth rate from RSD measurements
of biased, nonlinear tracers as galaxies however requires an ac-
curate modeling of redshift-space galaxy clustering. Extensive
work over the past decade has addressed this in the context of
cosmological perturbation theory, both in the Eulerian and La-
grangian formulations, providing linear and nonlinear predic-
tions for the redshift-space galaxy power spectrum (see, e.g.,
Kaiser 1987; Scoccimarro 2004; Matsubara 2008b,a; Taruya
et al. 2009, 2010; Reid & White 2011; Sato & Matsubara 2011;
Seljak & McDonald 2011; Valageas 2011; Zhang et al. 2013;
Zheng et al. 2013; Taruya et al. 2013; Senatore & Zaldarriaga
2014; Uhlemann et al. 2015; Okumura et al. 2015; Perko et al.
2016; Bose & Koyama 2016; Bianchi et al. 2016; Vlah et al.
2016; Hand et al. 2017; Hashimoto et al. 2017; Fonseca de la
Bella et al. 2017). Upadhye et al. (2016) in particular investigate
RSD, taking into account massive neutrinos and dark energy.

In the formulation of Scoccimarro (2004), and several that
followed, the large-scale effect of RSD is described in terms of
two main ingredients: the auto-power spectrum of the velocity
divergence field Pθθ, and the cross-spectrum between the veloc-
ity divergence and the matter density contrast Pδθ. Although,
perturbation theory appears to be a powerful tool to predict these
quantities in the quasi-linear regime, it presents severe limita-
tions when extended to smaller scales. In fact, RSD are charac-
terised by a peculiar coupling of large- and small-scale cluster-
ing that represents a severe challenge to perturbative methods.
Several assumptions usually made in the perturbative treatment,
such as the irrotational nature of the velocity field, particularly
relevant in the RSD modeling, are clearly not valid on small
scales.
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An insight into the nonlinear evolution of the velocity field
is offered by numerical simulations, the standard tool for these
kind of investigations. However, while extensive literature is
dedicated to the description of the small-scale power spectrum
and the characterisation of virialized structures as dark matter
halos, the estimation of the velocity field in N-body simulations
presents peculiar challenges. This is due to the challenging es-
timation of the velocity field in low-density regions, resulting
in a relatively limited number of studies on this specific topic
(see, e.g., Bernardeau & van de Weygaert 1996; Bernardeau et al.
1997a; Pueblas & Scoccimarro 2009; Jennings et al. 2011; Koda
et al. 2014; Zheng et al. 2015; Zhang et al. 2015; Yu et al. 2015;
Hahn et al. 2015; Jennings et al. 2015).

In particular, Jennings (2012), updating the previous results
of Jennings et al. (2011), provides a fitting formula for the non-
linear auto- and cross-power spectra of the velocity divergence,
Pθθ and Pδθ, calibrated using cosmological N-body simulations,
in terms of the nonlinear matter power spectrum Pδδ. Through a
four-parameter fit, they reach a 2% accuracy on Pθθ for z = 0 and
on scales k < 0.65 h Mpc−1; the fit is less accurate for Pδθ, and
at higher redshifts. A similar but simpler fit for Pδθ, again as a
function of Pδδ is proposed by Zheng et al. (2013). It is expected
to be 2% accurate for all scales (and redshift) where the adimen-
sional matter power spectrum ∆δδ(k) ≡ 4πk3Pδδ(k) < 1. An al-
ternative fit of the relation of Pθθ and Pθδ with Pδδ is represented
by the simple exponential damping proposed instead by Hahn
et al. (2015), which reaches a 5% accuracy for k < 1 h Mpc−1.

Any accurate modeling of galaxy clustering aiming at per-
cent precision on the recovered cosmological parameters should
also account for a nonzero neutrino mass. There are two main
reasons for this. On one side, cosmological observations cur-
rently provide the best upper limits on the sum of neutrino
masses (Planck Collaboration et al. 2016; Palanque-Delabrouille
et al. 2015) and proper modeling is therefore required to extract
the most unbiased estimates. On the other hand, at these lev-
els of precision, neglecting the presence of this sub-dominant
component would potentially add a comparable systematic er-
ror on any constraint derived from galaxy-clustering data (see
e.g., Baldi et al. 2014). These are the motivations behind the
significant effort spent over the past few years to model the ef-
fect of neutrino masses on large-scale structure observables, in
particular using numerical simulations (see, e.g., Ali-Haïmoud
& Bird 2013; Villaescusa-Navarro et al. 2014; Castorina et al.
2015; Carbone et al. 2016; Inman et al. 2015; Emberson et al.
2017; Zennaro et al. 2017; Villaescusa-Navarro et al. 2018; Liu
et al. 2018).

In this paper we use the Dark Energy and Massive Neutrinos
Universe (DEMNUni) set of N-body simulations (Carbone et al.
2016) to model the velocity power spectra (Pδθ and Pθθ) both in a
standard ΛCDM scenario and including a massive neutrino com-
ponent. The DEMNUni runs represent some of best simulations
in massive neutrino cosmologies, both in terms of volume and
mass resolution (Castorina et al. 2015). We propose an accurate
fitting formula involving a minimal number of free parameters,
which we calibrate against simulations, showing that the main
dependence on cosmology can be encapsulated in a dependence
on the current r.m.s. clustering amplitude σ8 of the cold mat-
ter, that is, CDM and baryons. We focus on this component, as
opposed to the total matter including neutrinos, as this appears
to provide the simplest description of halo abundance and bias
(Castorina et al. 2014).

In Sect. 2 we present our set of N-body simulations while
in Sect. 3 we describe the method used to estimate the cold
dark matter velocity field. In Sect. 4 we discuss previous results

∑
mν [eV] Ωcdm σ8,mm σ8,cc

mc
p

1010

[
M�
h

]
mν

p

109

[
M�
h

]
0.00 0.2700 0.846 0.846 8.27 −

0.17 0.2659 0.803 0.813 8.16 1.05

0.30 0.2628 0.770 0.786 8.08 1.85

0.53 0.2573 0.717 0.740 7.94 2.28

Table 1. Parameters of the four νΛCDM simulations that change among
the different realisations.

obtained in past literature and compare them to our results, and
in Sect. 5 we summarise our findings in.

2. Simulations

The DEMNUni simulations are a set of N-body cold dark matter
simulations produced with the aim of testing multiple cosmolog-
ical probes in the presence of massive neutrinos and dark-energy
scenarios beyond the standard ΛCDM. They represent a reliable
tool for exploring the impact of neutrinos on a wide range of dy-
namical scales, and have been extended to scenarios including
a dynamical dark-energy background, with different equations
of state parameters (w0, wa), in order to study their degeneracy
with the total neutrino mass at the nonlinear level. The technical
implementation and detailed features of the simulations are pre-
sented in the description paper by Carbone et al. (2016) and the
analysis of cold dark matter clustering by Castorina et al. (2015).

In this work we exploit the first set of simulations,
DEMNUni-I, describing several flat cosmological models char-
acterised by various values of the total neutrino mass,

∑
mν =

0, 0.17, 0.3, 0.53 eV, while keeping the total matter density pa-
rameter fixed at Ωm = 0.32. This implies that the cold dark
matter relative density Ωcdm changes across the four simula-
tions in order to keep the sum Ωcdm + Ων = Ωm constant.
The neutrino density is related to the total neutrino mass as
Ων =

∑
mν/93.14/h2 eV (Lesgourgues & Pastor 2006). Fur-

ther properties shared by the four cosmologies are the density
parameter associated to the cosmological constant ΩΛ = 0.68
and to the baryon density Ωb = 0.05, the Hubble constant
H0 = 67 km s−1Mpc−1, the primordial spectral index ns = 0.96
and, most importantly, the scalar amplitude of the matter power
spectrum As = 2.1265 × 109. As a consequence, while in the
large-scale limit the power spectra of cold dark matter tend to
the same value in all cosmological models, the value of the r.m.s.
of cold dark matter perturbations on spheres of radius 8 h−1 Mpc
depends on

∑
mν. The latter is denoted as σ8,c, to distinguish it

from the r.m.s of total matter perturbations, σ8,m.
The simulations were run on the FERMI supercomputer at

CINECA1 (5 × 106 CPU hours) using the tree particle hydrody-
namical code GADGET-3 modified to include massive neutrino
particles by Viel et al. (2010). The latter regulates the assem-
bly of Ncdm = 20483 cold dark matter particles and Nν = 20483

neutrino particles (when present) within a cubic periodic uni-
verse of comoving size L = 2000 h−1Mpc. The mass resolution
of cold dark matter and neutrinos varies slightly over the four
simulations (values are listed in Table 1), but in all cases it is
large enough as to properly describe clustering in the nonlinear
regime within the systematic error induced by neglecting bary-

1 http://www.cineca.it/
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Fig. 1. Tetrahedra in a spherical cell: the empty circles represent
the 3D distribution of CDM particles in a cubic region of size 8h−1Mpc
projected in 2D. They represent the input set of points on which we per-
form the Delaunay tessellation. The gray circle represents the spherical
cell. For clarity, we only show, in dashed light blue lines, the tetrahedra
which have their four vertices included in a slice of 1.5h−1Mpc (in the z-
direction) around the center of the cell. As an example we highlight one
tetrahedron overlapping the boundary of the spherical cell (dark blue
in the bottom left-hand corner). The red and green filled circles rep-
resent the randomly distributed points over the tetrahedron, the green
ones represent those points lying inside the spherical cell and that are
then used to assign a velocity to the corresponding region of the tetrahe-
dron. This is repeated for all tetrahedrons of the tessellation that overlap
the boundary of the spherical cell.

onic effects. Initial conditions were set at redshift zin = 99 using
the Zel’dovich (1970) approximation and were evolved to z = 0,
with a softening length ε = 20 h−1kpc. During the runs, 62
snapshots were saved for each simulation, with equal logarith-
mic interval in the scale factor.

3. Measurements of the density and velocity
spectra

The estimation of the velocity field in cosmological N-body
simulations has been investigated by Bernardeau & van de
Weygaert (1996); Bernardeau et al. (1997b); van de Wey-
gaert & Bernardeau (1998); Pueblas & Scoccimarro (2009), or
more recently with the Delaunay Tessellation Field Estimator
by Romano-Díaz & van de Weygaert (2007) and the Kriging
method by Yu et al. (2015). Here we adopt a method close to
the one proposed by Pueblas & Scoccimarro (2009), which im-
plements the Delaunay tessellation to reconstruct the velocity
field from test particles of cold dark matter. We apply the count-
in-cell technique to average both the velocity and density fields
within spheres of radius R = 3.9 h−1Mpc. Given the large num-
ber of particles in the simulation, we perform the Delaunay tes-
sellation only locally around each cell, rather than applying it to
the whole set of cold dark matter particles. We estimate the ve-

locity field on a grid, dividing the simulation into 10243 cubes of
size 1.95h−1Mpc, which are used to index the particle positions.

In order to estimate the velocity within a given spherical cell,
we start by considering the particles belonging to the eight sub-
cubes forming a cubical cell that contains the spherical cell it-
self. We then count how many particles are contained within the
sphere; if it is greater than 200 we choose to run the Delaunay
tessellation over the cell particles inside the sphere, otherwise we
run the Delaunay tesselation inside the cubical cell. In any case
we ensure that the total volume covered by the Voronoi tetra-
hedra inside the spherical cell includes at least 93% of the cell
volume, otherwise we automatically extend the radius in which
we are keeping the particles to perform the Delaunay tesselation
by a factor 3/2. We note that in practice the spherical cell size
in unchanged. Only the effective volume of the Delaunay tes-
selation is varied in order to make sure that the volume fraction
of tetrahedra within the spherical cell is representative at the 7%
level of the volume of the cell.

The difficulty arising from the estimation of the velocity field
convolved with our spherical (top-hat) window function is re-
lated to the treatment of the tetrahedra which are lying on the
boundary of each spherical cell. Our method consists in weight-
ing the average velocity of a tetrahedron by its volume if it lies
entirely within the spherical cell. Instead, for tetrahedra that ex-
tend outside of the cell boundary, we generate a set of 100 uni-
formly distributed random points inside the considered tetrahe-
dron and assign them a velocity, linearly interpolated from those
at each node of the tetrahedron. The same random points are also
used to estimate the volume fraction of the tetrahedron lying in-
side the spherical cell. In this way, a velocity can be assigned to
that specific sector of the spherical cell by averaging the veloci-
ties of the included random points. The result is then weighted
by the corresponding volume fraction. This process is described
in more detail in the following paragraphs and illustrated in Fig-
ure 1.

Each Voronoi tetrahedron can be described by a set of four
points x1, x2, x3 and x4 where xi = (xi, yi, zi); they are there-
fore defined by the transformation matrix (see Pueblas & Scoc-
cimarro 2009)

Ψ =

 ∆x2 ∆x3 ∆x4
∆y2 ∆y3 ∆y4
∆z2 ∆z3 ∆z4

 , (1)

where ∆xi = xi − x1. As a result, the volume of the j-th tetra-
hedron can be computed as w j = |Ψ|/6. The matrix Ψ can also
be seen as the matrix transforming the basis of the vectors com-
posed of ∆x2, ∆x3 and ∆x4 into the cartesian basis. If the position
s is taken as the tetrahedron basis, then the corresponding coor-
dinates in the cartesian basis are obtained as x = x1 + Ψs. The
same can be applied in order to interpolate linearly the velocity
of a point located in s,

v(x) = v1 + Φs, (2)

where

Φ =

 ∆vx,2 ∆vx,3 ∆vx,4
∆vy,2 ∆vy,3 ∆vy,4
∆vz,2 ∆vz,3 ∆vz,4

 . (3)

For tetrahedra entirely contained inside the sphere one can show
that the volume average of the interpolated velocity field inside
the tetrahedron is the arithmetic mean of the four velocities taken
at each vertex; V j = 1

4
∑4

i=1 vi. As mentioned above, for tetra-
hedra crossing the cell boundary, we randomly populate their
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volume with a uniform distribution of N = 100 points (see Fig.
1) and we evaluate their corresponding velocities using equation
2. The volume-averaged velocity assigned to the tetrahedron can
be computed as

V j =
1

Nin

Nin∑
i=1

v(xi), (4)

where Nin is the number of random points belonging to the spher-
ical cell and the fraction of its volume inside the spherical cell
can be estimated as w j = Nin

N |Ψ|/6. Finally, the volume-averaged
velocity assigned to the spherical cell is obtained with the sum

V =

∑Nt
j=1 w jV j∑Nt

j=1 w j
, (5)

where Nt is the total number of tetrahedra with at least one ver-
tex belonging to the spherical cell. We note that we checked
explicitly that in the most clustered catalogue, that is, the one
corresponding to the ΛCDM cosmology at z = 0, the number of
objects in a spherical cell is always greater than 8, thus avoiding
empty cells.

Once the velocity and density grids of 5123 regularly spaced
sampling points have been built, we can Fourier transform them
by means of a Fast Fourier Transform algorithm. Since a sim-
ple count-in-cell density interpolation can be severely affected
by aliasing when transforming to Fourier space, we employ an
interlacing technique to reduce this spurious contribution (Hock-
ney & Eastwood 1988; Sefusatti et al. 2016). Regarding the shot
noise correction, we neglect it because the mean number of par-
ticles in each cell is N̄ = 268 which corresponds to a 3% con-
tribution to the variance at z = 1.5 and for the Mν = 0.53eV
(snapshot having the lowest variance). We then compute the di-
vergence of the velocity field θk by simply combining the three
velocity grids as θk = i(kxvx + kyvy + kzvz). Then the density
power spectrum Pδδ, the cross power spectrum Pδθ , and the di-
vergence of the velocity power spectrum Pθθ are estimated by
averaging over spherical shells in k-space. We note that we also
average the modes, and assign the value of the angular average
of the spectra to the k-space position of the corresponding mode
average.

4. Results

Our goal is to provide accurate prescriptions to estimate the Pθθ

and Pδθ auto- and cross-spectra in the regime where the perturba-
tive approach fails in describing the velocity field and its power
spectra (Crocce et al. 2012).

The fitting functions for the velocity power spectra adopted
in Jennings et al. (2011) and Jennings (2012) describe the nonlin-
ear velocity spectra Pθθ and Pδθ in terms of the nonlinear matter
power spectrum Pδδ assuming a cosmology-independent relation
between these quantities at redshift zero and introducing a scal-
ing relation to extend the results at higher redshift. However, the
relations between Pθθ and Pδδ and between Pθδ and Pδδ are not
universal and depend strongly, in the first place, on the ampli-
tude of linear fluctuations, as measured for example by σ8. This
is particularly evident when comparing our set of massive neu-
trino cosmologies where the neutrino mass directly affects this
quantity. In Figure 2, the velocity spectra (auto and cross) are
plotted as a function of the corresponding matter density power
spectrum. These relations, far from being universal, clearly de-
pend as much on redshift as they depend on the sum of neutrino

masses, via the amplitude suppression induced by the latter. The
cosmology-independence of the fit proposed by Jennings et al.
(2011) is perhaps justified by the fact that the different cosmo-
logical models considered in that paper share the same amplitude
normalisation in terms of the σ8 parameter.

We chose a different approach to fit the velocity power spec-
tra measured in the DEMNUni-I simulations. In our set of sim-
ulations, all cosmological models considered present the same
amplitude for the total-matter power spectrum in the large-scale
limit, matching current CMB constraints (Planck Collaboration
et al. 2016). However, since the presence of massive neutrinos
suppresses the growth of fluctuations below the free-streaming
scale, we obtain quite different values for σ8(z = 0) as a func-
tion of neutrino mass (see Table 1). We are thus able to test a
wider range of amplitudes and shapes of the linear power spec-
trum, since neutrinos affect both of them.

Figure 3 shows the ratio of the measured power spectrum of
the density, velocity, and cross to their respective linear predic-
tions. Across all cosmological models and redshifts considered,
we notice the usual increase in small-scale power for the density
power spectrum Pδδ as well as the slower nonlinear growth for
the velocity perturbations leading to a nonlinear suppression of
Pδθ and particularly of Pθθ (see e.g., Bernardeau et al. 2002).

Following Hahn et al. (2015), we therefore choose to model
the nonlinear corrections to the velocity spectra in terms of
damping functions, in order to account for the suppression of
power characterising the velocity divergence field. In addition,
the level of such suppression will be, as observed, dependent
on cosmology. In our approach, we do not assume a universal
mapping independently of the considered cosmology. The main
motivation supporting this is the empirical evidence that the ve-
locity spectra are damped differently for different cosmological
backgrounds.

In this section we explain our general fitting formulae and
show how the chosen parameters depend on the value of the
overall matter clustering. For simplicity, we first employ fitting
functions featuring one single free parameter that accounts for
the damping of the linear prediction in the nonlinear regime (see
Fig. 3). As first approximation, one can model the velocity spec-
tra using one single damping function such as

Pδθ(k) =
{
(PHF

δδ (k)PLin
θθ (k)

} 1
2 e−

k
kδ (6)

and

Pθθ(k) = PLin
θθ (k)e−

k
kθ , (7)

where the (only) two free parameters are the typical damping
scales kδ and kθ. We note that PHF

δδ (k) refers to the nonlin-
ear density-density CDM power spectrum computed from the
Halofit calibration of Takahashi et al. (2012) while PLin

θθ (k) refers
to the linear auto-spectrum of the velocity divergence which can
be computed as PLin

θθ (k) = f 2(k)PLin
δδ (k).

The fit for the velocity power spectra is carried out using
a least-squares approach, that is, we compute the likelihood of
the parameters given the measured spectra with the χ2 function
defined as

χ2 =

N∑
i=1

[
PNL

xy (ki) − Pxy(ki)
]2

σ2
i

, (8)

where N is the total number of wavenumbers considered in the
fit, PNL

xy (ki) is the measured auto- or cross-spectrum and σ2
i is

its variance at the i−th wave mode ki. We limit the fitting range

Article number, page 4 of 8



J. Bel et al.: Accurate fitting functions for peculiar velocity spectra in standard and massive-neutrino cosmologies

Fig. 2. Relation between the velocity cross (left) and auto (right) spectra with the density auto-spectrum for the different redshifts and cosmologies
considered in this work. The shade of blue represents different values of the total neutrino mass, darker when the neutrino mass is increasing. The
various redshifts (z = 0, 0.5, 1, 1.5) are respectively represented with dot-dashed, long dashed, short dashed, and solid lines. The black dotted line
represents for each redshift the linear mapping (PLin

δθ = f PLin
δδ and Pδθ = f 2PLin

δδ taken in the ΛCDM limit, i.e., at small k).

to kmax = 0.6 h Mpc−1, and since we have only one realisation
for each cosmology we neglect the shot-noise and the nonGaus-
sian contributions to the covariance between wave modes. Under
these assumptions the error can be approximated as

σi =
kF
√

2π

Pxy(ki)
ki

. (9)

We note that our choice of using a fixed power α = 1 for
the exponent, rather than having more degrees of freedom (i.e.,
exp(−(k/k∗)α)), comes from a further test we carried out, which
shows that the best-fit value of α is always close to 1 if we treat
it as a free parameter (see also Hahn et al. 2015). We note that
this is at odds with what one would expect when considering
the propagator in renormalized perturbation theory (Bernardeau
et al. 2008, 2012; Crocce et al. 2012), in which case α would be
closer to 2.

The results of the fit are shown in the first and third columns
of Figure 4. One can see that the simple modeling provided
by Eq. 6 is able to reproduce the cross power spectrum Pδθ

in the nonlinear regime with an accuracy better than 5% up to
k = 0.65 h Mpc−1. The fit is not working as well for the auto
spectrum Pθθ (third panel) especially at low redshift. The inac-
curacy in this case can reach 7-8% in between k = 0.1h/Mpc
and k = 0.3h/Mpc. Nonetheless, this approximation could be
considered sufficient for analyses that do not require precision
around the BAO scale of better than few percent. For more gen-
eral applications, we improve the accuracy of the model by in-
creasing the degrees of freedom of the fitting functions.

In the case of the cross-power spectrum, it is sufficient to
add only one parameter b, which we fit between k = 0.55 and
k = 0.7 h Mpc−1,

Pδθ(k) =
{
(PHF

δδ (k)PLin
θθ (k)

} 1
2 e−

k
kδ
−bk6

. (10)

For the auto-spectrum Pθθ, it turns out that two extra free param-
eters are required for a proper gain in accuracy. We therefore

adopt a polynomial fitting for the damping function, as

Pθθ(k) = PLin
θθ (k)e−k(a1+a2k+a3k2), (11)

involving three parameters, which we fit in the range 0.01 < k <
0.7 h Mpc−1. The performances of the new fitting functions are
shown in the second and fourth columns of Figure 4. In this case,
the measurements of Pθθ are reproduced with a maximum sys-
tematic error of 3% on all scales below k = 0.7 h Mpc−1, and for
all redshifts and neutrino masses considered. We therefore use a
total of only five free parameters kδ, b, a1, a2 and a3 to mimic,
with a 3% level accuracy at k < 0.7 h Mpc−1, the nonlinear
effects on both the auto- and cross-spectra Pθθ and Pδθ.

Let us now focus on the sensitivity of these parameters to
cosmology and specifically to the overall amplitude of the mat-
ter power spectrum. From our set of four simulations at four
different redshifts we are able to span a large range of possible
values of σ8, which we use as a proxy for the amount of non-
linearities. Regarding neutrino cosmologies it is necessary to
choose whether we use the σ8 defined for cold dark matter only,
σ8,c , or the one defined for the total matter, σ8,m. It has been
shown (Castorina et al. 2015) that regarding the bias or the non-
linear effects on the density power spectrum Pδδ, what matters
is the amplitude of the cold dark matter clustering and not the
total one. We have analyzed the dependency of the fitted param-
eters with respect to both amplitudes σ8,c and σ8,m and we found
that one should use the total matter σ8,m parameter in order to
assess the correct values of kδ, b, a1, a2 and a3; at least, this
choice is the one that lowers the residual dependency with re-
spect to the neutrino mass. Figure 5 shows that the cosmological
dependance of the fitting parameters can be mostly encapsulated
into the σ8,m parameter evaluated at the corresponding redshift.
The most relevant example is the good match at redshift 1.5 of
the ΛCDM simulation with the Mν = 0.53eV simulation at red-
shift 1; these simulations share almost the same value of the total
matter σ8,m, while differing significantly in the power spectrum
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Fig. 3. Ratio between nonlinear (measured) PNL and the linear (predicted) PLin power spectra in the ΛCDM case (
∑

mν = 0) and for the three
neutrino masses (

∑
mν = {0.17, 0.3, 0.53} eV). The density–density, density–velocity divergence, and velocity divergence–velocity divergence

spectra are represented by blue solid, red short dashed, and green long dashed lines, respectively. Each row shows the redshift evolution of these
ratios (from top to bottom z = 0, 0.5, 1. and 1.5.)

shape. For the two cases, we obtain the same values for the fitted
parameters kδ and kθ.

On the contrary, when using the cold dark matter σ8,c param-
eter (see Table 1) the residuals are increasing because of spurious
neutrino mass dependence when going from one cosmology to
another. This effect can be explained by the fact that if massive
neutrinos have a weak effect on the dark matter clustering in the
nonlinear regime, they add, instead, a relevant contribution to
the velocity field which is felt by dark matter particles. As a re-
sult, it seems that the preferred dependence on the total matter
σ8,m comes from the fact that nonlinearities in the velocity field
are generated by the whole matter distribution (cold dark matter
plus neutrinos). This confirms the need for running cosmologi-

cal simulations including massive neutrino particles in order to
generate a velocity field correctly treated in the nonlinear regime,
especially for what concerns RSD analyses.

The final step of our fitting process is to fit the dependence
of the shape parameters kδ, b, a1, a2, a3 and kθ with respect to
the total matter σ8,m. To this purpose we limit ourselves to linear
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Fig. 4. Fractional deviation of the measured velocity spectra from our best-fitting models. Different rows mark different redshifts as specified
on the left of the panels. The first and third columns show the fit of Pδθ using equation 6, and the fit of Pθθ using equations 7. The second and
fourth columns show results corresponding to equations 10 and 11. The black dashed line marks the 0, while the light/dark gray bands represent
the 5%/3% deviations from the measurements. Finally, the red shaded color shows the results for various neutrino masses (darker when increasing
the neutrino mass) using the fitted shape parameters while the blue shaded lines show the results when using the fitted dependance of the shape
parameters with respect to σ8,m (see Eqs. 12).

Fig. 5. Top: Dependence of the fitting parameters kδ, b, kθ, a1, a2 and
a3 on the total matter clustering amplitude σ8,m at each redshift, in the
corresponding simulation (symbols). Lines are showing the fit of the
dependance. Bottom: Residual between the fitted σ8,m dependance and
the measured one.

or quadratic fitting depending on the parameters, finding
a1 = −0.817 + 3.198σ8,m ,

a2 = 0.877 − 4.191σ8,m ,

a3 = −1.199 + 4.629σ8,m ,

1/kδ = −0.017 + 1.496σ2
8,m ,

b = 0.091 + 0.702σ2
8,m ,

1/kθ = −0.048 + 1.917σ2
8,m , (12)

where σ8,m refers to the linear rms of total matter fluctuations
computed at the required redshift. Therefore, the cross- and
auto-spectra Pδθ and Pθθ can be computed as follows: compute
the linear and nonlinear cold dark matter power spectrum at the
required redshift, evaluate the linear σ8,m as

σ2
8,m =

∫ +∞

0
4πk3Pm(k)Ŵ2(kR)d ln k, (13)

where R = 8h−1Mpc, Ŵ(x) ≡ 3/x3 [sin x − x cos x] and Pm is the
linear total matter power spectrum. Finally, compute the kδ, b,
kθ, a1, a2 and a3 parameters from Eq. 12 and the velocity spectra
from Eqs. (10) and (11) (or 6 and 7 depending on the required
accuracy). In order to summarize the overall accuracy of our
fitting formula, we show in Fig. 4 the comparison between the
intrinsic accuracy of the fitting formula (for the shape) in red
shade and the final accuracy obtained assuming the additional
fitted dependency on σ8,m in blue shade. One can see that the
accuracy below k = 0.8 h Mpc−1 is about 3% for the cross-
power spectrum while the auto-power spectrum reaches a similar
accuracy below k = 0.7 h Mpc−1.

5. Summary

We set up an original algorithm in order to estimate the velocity
field in cosmological N-body simulations. From those measure-
ments performed on sixteen particle distributions spanning four
different cosmological models and four redshifts, that is, a se-
ries of 16 snapshots, we have shown that the mapping from the
nonlinear CDM density power spectrum Pδδ to the nonlinear ve-
locity spectra Pδθ and Pθθ cannot be considered as universal but
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shows a clear dependence on the amplitude of dark matter clus-
tering (see Fig. 2).

Adopting a very simple modeling involving only two free
parameters, we managed to reproduce our measurements with
a precision of 3% below k = 0.6 h Mpc−1 for the cross-power
spectrum Pδθ. However, we reached only a 5% accuracy at red-
shifts higher than or equal to z = 0.5 and for k lower than 0.7 h
Mpc−1. We then present an improved version of the fitting func-
tion which involves a total of five free parameters (two for the
cross-spectrum and three for the auto-spectrum) and allows us
to obtain an overall accuracy of 3% for wave modes lower than
0.7 h Mpc−1.

Finally, we we showed evidence of the dependence of the
shape parameters of the proposed fitting functions on the total
matter r.m.s. fluctuations in spheres of radius 8h−1Mpc and pro-
posed simple fitting forms for the shape parameters with respect
to the σ8,m parameter evaluated at the considered redshift. This
preferred dependence with respect to the total matter amplitude
rather than the cold dark matter one confirms the relevance of
the neutrino perturbations on the cold dark matter velocity field
in the nonlinear regime.

In a future paper we shall generalize these results using the
second set of the DEMNUni cosmological simulations that in-
clude dynamical dark energy, extending our study of the depen-
dence of the shape parameters on the r.m.s. amplitude of cluster-
ing σ8,m.
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