37 research outputs found

    ηη\eta-\eta^\prime mixing and the next-to-leading-order power correction

    Full text link
    The next-to-leading-order O(1/Q4)O(1/Q^4) power correction for ηγ\eta\gamma and ηγ\eta^\prime\gamma form factors are evaluated and employed to explore the ηη\eta-\eta^\prime mixing. The parameters of the two mixing angle scheme are extracted from the data for form factors, two photon decay widths and radiative J/ψJ/\psi decays. The χ2\chi^2 analysis gives the result: fη1=(1.16±0.06)fπ,fη8=(1.33±0.23)fπ,θ1=9±3,θ8=21.3±2.3f_{\eta_1}=(1.16\pm0.06)f_\pi, f_{\eta_8}=(1.33\pm0.23)f_\pi, \theta_1=-9^\circ\pm 3^\circ, \theta_8=-21.3^\circ\pm 2.3^\circ, where fη1(8)f_{\eta_{1(8)}} and θ1(8)\theta_{1(8)} are the decay constants and the mixing angles for the singlet (octet) state. In addition, we arrive at a stringent range for fηc:10f_{\eta^\prime}^c:-10 MeVfηc4\le f_{\eta^\prime}^c\le -4 MeV.Comment: 23 pages, 9 figures, To be publshied in Phys. Rev.

    Theoretical study of incoherent phi photoproduction on a deuteron target

    Get PDF
    We study the photoproduction of phi mesons in deuteron, paying attention to the modification of the cross section from bound protons to the free ones with the aim of comparing with recent results at LEPS. For this purpose we take into account Fermi motion in single scattering and rescattering of the phi to account for phi absorption on a second nucleon as well as the rescattering of the proton. We find that the contribution of the double scattering is much smaller than the typical cross section of gamma p to phi p in free space, which implies a very small screening of the phi production in deuteron. The contribution from the proton rescattering, on the other hand, is found to be not negligible compared to the cross section of gamma p to phi p in free space, and leads to a moderate reduction of the phi photoproduction cross section on a deuteron at forward angles if LEPS set up is taken into account. The Fermi motion allows contribution of the single scattering in regions forbidden by phase space in the free case. In particular, we find that for momentum transferred squared close to the maximum value, the Fermi motion changes drastically the shape of d sigma / dt, to the point that the ratio of this cross section to the free one becomes very sensitive to the precise value of t chosen, or the size of the bin used in an experimental analysis. Hence, this particular region of t does not seem the most indicated to find effects of a possible phi absorption in the deuteron. This reaction is studied theoretically as a function of t and the effect of the experimental angular cuts at LEPS is also discussed, providing guidelines for future experimental analyses of the reaction.Comment: 17 pages, 16 figure

    Determination of the η\eta and η\eta' Mixing Angle from the Pseudoscalar Transition Form Factors

    Full text link
    The possible range of ηη\eta-\eta' mixing angle is determined from the transition form factors Fηγ(Q2)F_{\eta \gamma}(Q^2) and Fηγ(Q2)F_{\eta' \gamma}(Q^2) with the help of the present experimental data. For such purpose, the quark-flavor mixing scheme is adopted and the pseudoscalar transition form factors are calculated under the light-cone pQCD framework, where the transverse momentum corrections and the contributions beyond the leading Fock state have been carefully taken into consideration. We construct a phenomenological expression to estimate the contributions to the form factors beyond the leading Fock state based on their asymptotic behavior at Q20Q^2\to 0 and Q2Q^2\to\infty. By taking the quark-flavor mixing scheme, our results lead to ϕ=38.0±1.0±2.0\phi= 38.0^{\circ}\pm 1.0^{\circ}\pm 2.0^{\circ}, where the first error coming from experimental uncertainty and the second error coming from the uncertainties of the wavefunction parameters. The possible intrinsic charm component in η\eta and η\eta' is discussed and our present analysis also disfavors a large portion of intrinsic charm component in η\eta and η\eta', e.g. fηc50MeV|f^c_{\eta'}|\le 50 {\rm MeV}.Comment: 18 Pages, 3 figures. Several references added. To be published in EPJ

    Tri-meson-mixing of π\pi-η\eta-η\eta' and ρ\rho-ω\omega-ϕ\phi in the light-cone quark model

    Full text link
    The radiative transition form factors of the pseudoscalar mesons {π\pi, η\eta, η\eta'} and the vector mesons {ρ\rho, ω\omega, ϕ\phi} are restudied with π\pi-η\eta-η\eta' and ρ\rho-ω\omega-ϕ\phi in tri-meson-mixing pattern, which is described by tri-mixing matrices in the light-cone constituent quark model. The experimental transition decay widths are better reproduced with tri-meson-mixing than previous results in a two-mixing-angle scenario of only two-meson η\eta-η\eta' mixing and ω\omega-ϕ\phi mixing.Comment: 8 pages, 6 figures, final version to appear in EPJ

    Two photons into \pi^0\pi^0

    Full text link
    We perform a theoretical study based on dispersion relations of the reaction \gamma\gamma\to \pi^0\pi^0 emphasizing the low energy region. We discuss how the f_0(980) signal emerges in \gamma\gamma\to \pi\pi within the dispersive approach and how this fixes to a large extent the phase of the isoscalar S-wave \gamma\gamma\to \pi\pi amplitude above the K\bar{K} threshold. This allows us to make sharper predictions for the cross section at lower energies and our results could then be used to distinguish between different \pi\pi isoscalar S-wave parameterizations with the advent of new precise data on \gamma\gamma\to\pi^0\pi^0. We compare our dispersive approach with an updated calculation employing Unitary Chiral Perturbation Theory (U\chiPT). We also pay special attention to the role played by the \sigma resonance in \gamma\gamma\to\pi\pi and calculate its coupling and width to gamma\gamma, for which we obtain \Gamma(\sigma\to\gamma\gamma)=(1.68\pm 0.15) KeV.Comment: 31 pages, 9 figure

    Measurement of Exclusive rho+rho- Production in Mid-Virtuality Two-Photon Interactions and Study of the gamma gamma* -> rho rho Process at LEP

    Full text link
    Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2 < 30 GeV^2

    Measurement of Exclusive rho^0 rho^0 Production in Mid-Virtuality Two-Photon Interactions at LEP

    Full text link
    Exclusive rho^0 rho^0 production in two-photon collisions between a quasi-real and a mid-virtuality photon is studied with data collected at LEP at centre-of-mass energies 183GeV < sqrt{s} < 209GeV with a total integrated luminosity of 684.8/pb. The cross section of the process gamma gamma* -> rho^0 rho^0 is determined as a function of the photon virtuality, q^2, and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 0.2GeV^2 < q^2 < 0.85GeV^2 and 1.1GeV < Wgg < 3GeV

    Measurement of Exclusive \rho^+\rho^- Production in High-Q^2 Two-Photon Collisions at LEP

    Get PDF
    Exclusive rho^+ rho^- production in two-photon collisions involving a single highly-virtual photon is studied with data collected at LEP at centre-of-mass energies 89 GeV < \sqrt{s} < 209 GeV with a total integrated luminosity of 854.7 pb^-1. The cross section of the process gamma gamma^* -> rho^+ rho^- is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 1.2 GeV^2 < Q^2 < 30 GeV^2 and 1.1 GeV < W_gg < 3 GeV. The \rho^+\rho^- production cross section is found to be of the same magnitude as the cross section of the process gamma gamma^* -> rho^0 rho^0, measured in the same kinematic region by L3, and to have similar W_gg and Q^2 dependences

    A determination of electroweak parameters from Z0→μ+μ- (γ)

    Full text link

    Study of the KS0KS0 final state in two-photon collisions

    Full text link
    corecore