56 research outputs found

    Antioxidant airway responses following experimental exposure to wood smoke in man

    Get PDF
    Background: Biomass combustion contributes to the production of ambient particulate matter (PM) in rural environments as well as urban settings, but relatively little is known about the health effects of these emissions. The aim of this study was therefore to characterize airway responses in humans exposed to wood smoke PM under controlled conditions. Nineteen healthy volunteers were exposed to both wood smoke, at a particulate matter (PM2.5) concentration of 224 +/- 22 mu g/m(3), and filtered air for three hours with intermittent exercise. The wood smoke was generated employing an experimental set-up with an adjustable wood pellet boiler system under incomplete combustion. Symptoms, lung function, and exhaled NO were measured over exposures, with bronchoscopy performed 24 h post-exposure for characterisation of airway inflammatory and antioxidant responses in airway lavages. Results: Glutathione (GSH) concentrations were enhanced in bronchoalveolar lavage (BAL) after wood smoke exposure vs. air (p = 0.025), together with an increase in upper airway symptoms. Neither lung function, exhaled NO nor systemic nor airway inflammatory parameters in BAL and bronchial mucosal biopsies were significantly affected. Conclusions: Exposure of healthy subjects to wood smoke, derived from an experimental wood pellet boiler operating under incomplete combustion conditions with PM emissions dominated by organic matter, caused an increase in mucosal symptoms and GSH in the alveolar respiratory tract lining fluids but no acute airway inflammatory responses. We contend that this response reflects a mobilisation of GSH to the air-lung interface, consistent with a protective adaptation to the investigated wood smoke exposure

    Effects of controlled diesel exhaust exposure on apoptosis and proliferation markers in bronchial epithelium – an in vivo bronchoscopy study on asthmatics, rhinitics and healthy subjects

    No full text
    BackgroundEpidemiological evidence demonstrates that exposure to traffic-derived pollution worsens respiratory symptoms in asthmatics, but controlled human exposure studies have failed to provide a mechanism for this effect. Here we investigated whether diesel exhaust (DE) would induce apoptosis or proliferation in the bronchial epithelium in vivo and thus contribute to respiratory symptoms.MethodsModerate (n?=?16) and mild (n?=?16) asthmatics, atopic non-asthmatic controls (rhinitics) (n?=?13) and healthy controls (n?=?21) were exposed to filtered air or DE (100 ?g/m 3 ) for 2 h, on two separate occasions. Bronchial biopsies were taken 18 h post-exposure and immunohistochemically analysed for pro-apoptotic and anti-apoptotic proteins (Bad, Bak, p85 PARP, Fas, Bcl-2) and a marker of proliferation (Ki67). Positive staining was assessed within the epithelium using computerized image analysis.ResultsNo evidence of epithelial apoptosis or proliferation was observed in healthy, allergic or asthmatic airways following DE challenge.ConclusionIn the present study, we investigated whether DE exposure would affect markers of proliferation and apoptosis in the bronchial epithelium of asthmatics, rhinitics and healthy controls, providing a mechanistic basis for the reported increased airway sensitivity in asthmatics to air pollutants. In this first in vivo exposure investigation, we found no evidence of diesel exhaust-induced effects on these processes in the subject groups investigated

    Urinary leukotriene E4 and prostaglandin D2 metabolites increase in adult and childhood severe asthma characterized by type 2 Inflammation : a clinical observational study

    Get PDF
    Rationale: New approaches are needed to guide personalized treatment of asthma.Objective: To test if urinary eicosanoid metabolites can direct asthma phenotyping.Methods: Urinary metabolites of prostaglandins (PG), cysteinyl-leukotrienes (LT) and isoprostanes were quantified in the Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes (U-BIOPRED) study including 86 adults with mild-to-moderate asthma (MMA), 411 with severe asthma (SA), and 100 healthy controls (HC). Validation was performed in 302 SA subjects followed-up after 12-18 months, and externally in 95 adolescents with asthma.Measurement and Main Results: Metabolite levels in HC were unrelated to age, BMI and sex, except for the PGE2-pathway. Eicosanoid levels were generally greater in MMA relative to HC, with further elevations in SA, except for PGE2-metabolites in males, which were the same or lower in non-smoking asthmatics as in HC. Metabolite levels were unchanged in asthmatics adherent to oral corticosteroid treatment as documented by urinary prednisolone detection, whereas SA treated with omalizumab had lower levels of LTE4 and the PGD2 metabolite 2,3-dinor-11?-PGF2?. High levels of LTE4 and PGD2-metabolites were associated with lower lung-function, and increased levels of exhaled nitric oxide and eosinophil markers in blood, sputum and urine in U-BIOPRED and in adolescents with asthma. These type-2 (T2) asthma associations were reproduced in the follow-up visit of the U-BIOPRED study, and found to be as sensitive to detect T2 inflammation as the established biomarkers. Conclusions: Monitoring of urinary eicosanoids can identify T2 asthma and introduces a new non-invasive approach for molecular phenotyping of adult and adolescent asthma

    Photocatalytic Decomposition of Formic Acid on Mo2C-Containing Catalyst

    Get PDF
    Soluble components in the peripheral blood from experimental exposure of 14 healthy subjects to filtered air and wood smoke. Samples were collected before (pre), at 24 h and 44 h after exposure, to air and wood smoke. Data are given as medians with interquartile range. (DOCX 62 kb

    Impact of individual level uncertainty of lung cancer polygenic risk score (PRS) on risk stratification

    Get PDF
    Abstract Background Although polygenic risk score (PRS) has emerged as a promising tool for predicting cancer risk from genome-wide association studies (GWAS), the individual-level accuracy of lung cancer PRS and the extent to which its impact on subsequent clinical applications remains largely unexplored. Methods Lung cancer PRSs and confidence/credible interval (CI) were constructed using two statistical approaches for each individual: (1) the weighted sum of 16 GWAS-derived significant SNP loci and the CI through the bootstrapping method (PRS-16-CV) and (2) LDpred2 and the CI through posteriors sampling (PRS-Bayes), among 17,166 lung cancer cases and 12,894 controls with European ancestry from the International Lung Cancer Consortium. Individuals were classified into different genetic risk subgroups based on the relationship between their own PRS mean/PRS CI and the population level threshold. Results Considerable variances in PRS point estimates at the individual level were observed for both methods, with an average standard deviation (s.d.) of 0.12 for PRS-16-CV and a much larger s.d. of 0.88 for PRS-Bayes. Using PRS-16-CV, only 25.0% of individuals with PRS point estimates in the lowest decile of PRS and 16.8% in the highest decile have their entire 95% CI fully contained in the lowest and highest decile, respectively, while PRS-Bayes was unable to find any eligible individuals. Only 19% of the individuals were concordantly identified as having high genetic risk (&gt; 90th percentile) using the two PRS estimators. An increased relative risk of lung cancer comparing the highest PRS percentile to the lowest was observed when taking the CI into account (OR = 2.73, 95% CI: 2.12–3.50, P-value = 4.13 × 10−15) compared to using PRS-16-CV mean (OR = 2.23, 95% CI: 1.99–2.49, P-value = 5.70 × 10−46). Improved risk prediction performance with higher AUC was consistently observed in individuals identified by PRS-16-CV CI, and the best performance was achieved by incorporating age, gender, and detailed smoking pack-years (AUC: 0.73, 95% CI = 0.72–0.74). Conclusions Lung cancer PRS estimates using different methods have modest correlations at the individual level, highlighting the importance of considering individual-level uncertainty when evaluating the practical utility of PRS. </jats:sec

    Airway antioxidant responses to oxidative air pollution and vitamin supplementation

    No full text
    Air pollutants, such as ozone (O3) and diesel exhaust particles, elicit oxidative stress in the lung. Antioxidants within the respiratory tract lining fluid (RTLF) protect the underlying tissue from oxidative injury. Supplementation with vitamins has been shown to modulate the acute ozone-induced effects, but the mechanisms behind this have not been fully clarified. The aim of this thesis was to investigate the airway responses to diesel exhaust and ozone exposure in healthy humans, with the emphasis on inflammatory and antioxidant responses. Furthermore, to study whether oral supplementation with vitamin C could increase ascorbate concentration in the RTLF and whether vitamin supplementation could modulate the negative effects induced by ozone exposure. Diesel exhaust (100 µg/m3 PM10 for 2h), evaluated 18 hours post exposure (PE), induced a neutrophilic airway inflammation and an increase in bronchoalveolar (BAL) urate and reduced glutathione. During O3 exposure (0.2 ppm for 2h), significant losses of nasal RTLF urate and ascorbate concentrations were observed. Six hours PE, a neutrophilic inflammation was evident in the bronchial wash (BW), together with enhanced concentrations of urate and total glutathione. In the bronchoalveolar lavage (BAL), where vitamin C, urate and glutathione concentrations were augmented, no inflammatory response was seen. In alveolar lavage leukocytes, there was a significant loss of glutathione and cysteine, whereas an increase in ascorbate was found in bronchial tissue samples. Following supplementation with increasing doses of vitamin C (60-1,000 mg/day, for 14 days), evaluated 24 hours after the last dose, ascorbate concentrations were unchanged in the nasal RTLF, despite elevated concentrations in plasma and urine. In contrast, following a single dose of 1g of vitamin C, vitamin C concentrations increased significantly in both plasma and nasal lavage two hours post supplementation, before returning to baseline levels at 24 hours. Notably, dehydroascorbate (DHA) accounted for the largest part of RTLF vitamin C and a number of control experiments were performed to ensure the authenticity of this finding. Healthy O3 responders were exposed to O3 (0.2 ppm for 2 h) and air, following seven days of supplementation with vitamin C and E or placebo. No protective effect on lung function or airway inflammation was observed following supplementation. BW and BAL-DHA were enhanced after O3, with further increases following supplementation. In conclusion, oxidative air pollutants induce airway inflammation, as well as a broad spectrum of antioxidant adaptations, which could ultimately limit the airway inflammatory responses. Oral vitamin supplementation was shown to augment RTLF-vitamin C concentrations, but it did not provide protection from the ozone-induced airway responses following a single insult of ozone. The finding of high concentrations of DHA in the RTLF could indicate that DHA represents an important transport form of vitamin C onto the surface of the lung

    Surfactant Protein A in particles in exhaled air (PExA), bronchial lavage and bronchial wash - a methodological comparison

    No full text
    Introduction: At present, there are few methods available for monitoring respiratory diseases affecting distal airways. Bronchoscopy is the golden standard for sampling the lower airways. The recently developed method for collecting non-volatile material from exhaled air – PExA (Particles in Exhaled air) is a promising new tool, but no direct comparison between the two methods has yet been performed. The aim of the present study was to compare sampling using PExA with bronchial wash (BW) representing the larger more proximal airways and broncho-alveolar lavage (BAL) representing the distal airways. Methods: 15 healthy non-smoking subjects (7 female/8 male), age 28 ± 4 years, with normal lung function were included in the study. PExA-sampling (2 × 250 ng particles) and bronchoscopy with BW (2 × 20 ml) and BAL (3 × 60 ml sterile saline) was performed. Albumin and Surfactant Protein A (SP-A) were analyzed with ELISA, and analyses of correlation were performed. Results: A significant association was found between BAL-fluid albumin and PExA-albumin (rs:0.65 p = 0.01). There was also an association between SP-A in PExA and BAL, when corrected for albumin concentration (rs:0.61, p = 0.015). When correlating concentrations of albumin and SP-A in bronchial wash and PExA respectively, no associations were found. Conclusions: This is the first direct comparison between the bronchoscopy-based BW/BAL-fluids and material collected using the PExA methodology. Both albumin and albumin-corrected SP-A concentrations were significantly associated between BAL and PExA, however, no such association was found in either marker between BW and PExA. These results indicate that the PExA method samples the distal airways. PExA is thus considered a new promising non-invasive assessment for monitoring of the distal airways

    Serum metalloproteinase-9 is related to COPD severity and symptoms - cross-sectional data from a population based cohort-study

    No full text
    Background: Chronic obstructive pulmonary disease, COPD, is an increasing cause of morbidity and mortality worldwide, and an imbalance between proteases and antiproteases has been implicated to play a role in COPD pathogenesis. Matrix metalloproteinases (MMP) are important proteases that along with their inhibitors, tissue inhibitors of metalloproteinases (TIMP), affect homeostasis of elastin and collagen, of importance for the structural integrity of human airways. Small observational studies indicate that these biomarkers are involved in the pathogenesis of COPD. The aim of this study was to investigate serum levels of MMP-9 and TIMP-1 in a large Swedish population- based cohort, and their association with disease severity and important clinical symptoms of COPD such as productive cough. Methods: Spirometry was performed and peripheral blood samples were collected in a populations-based cohort (median age 67 years) comprising subjects with COPD (n = 594) and without COPD (n = 948), in total 1542 individuals. Serum MMP-9 and TIMP-1 concentrations were measured with enzyme linked immunosorbant assay (ELISA) and related to lung function data and symptoms. Results: Median serum MMP-9 values were significantly higher in COPD compared with non-COPD 535 vs. 505 ng/ml (P = 0.017), without any significant differences in serum TIMP-1-levels or MMP-9/TIMP-1-ratio. In univariate analysis, productive cough and decreasing FEV1% predicted correlated significantly with increased MMP-9 among subjects with COPD (P = 0.004 and P = 0.001 respectively), and FEV1% predicted remained significantly associated to MMP-9 in a multivariate model adjusting for age, sex, pack years and productive cough (P = 0.033). Conclusion: Productive cough and decreasing FEV1 were each associated with MMP-9 in COPD, and decreasing FEV1 remained significantly associated with MMP-9 also after adjustment for common confounders in this population-based COPD cohort. The increased serum MMP-9 concentrations in COPD indicate an enhanced proteolytic activity that is related to disease severity, and further longitudinal studies are important for the understanding of MMP-9 in relation to the disease process and the pathogenesis of different COPD phenotypes.OLI
    corecore