10 research outputs found

    Subduction tractions and vertical axis rotations in the Zagros–Makran transition zone, SE Iran: the 2013 May 11 Mw 6.1 Minab earthquake

    Get PDF
    The source parameters and slip distribution of the 2013 May 11 Mw 6.1 Minab earthquake are studied using seismology, geodesy and field observations. We observe left-lateral strike-slip motion on a fault striking ENE–WSW; approximately perpendicular to previously studied faults in the Minab–Zendan–Palami fault zone. The fault that ruptured in 2013 is one of a series of ∌E–W striking left-lateral faults visible in the geology and geomorphology. These accommodate a velocity field equivalent to right-lateral shear on ∌N–S striking planes by clockwise rotations about vertical axes. The presence of these faults can reconcile differences in estimates of fault slip rates in the western Makran from GPS and Quaternary dating. The longitudinal range of shear in the western Makran is likely to be controlled by the distance over which the underthrusting Arabian lithosphere deepens in the transition from continent–continent collision in the Zagros to oceanic subduction in the Makran

    Seismogenic faulting of the sedimentary sequence and laterally variable material properties in the Zagros Mountains (Iran) revealed by the August 2014 Murmuri (E. Dehloran) earthquake sequence

    Get PDF
    We present source models for the August 2014 Murmuri (Dehloran) earthquake sequence in the Zagros Mountains of Iran. An Mw6.2 mainshock was followed by an aftershock sequence containing five events of Mw ≄ 5.4. Models of P and SH waveforms show that all events had dominantly thrust-faulting mechanisms, and had centroid depths that place them within the thick sedimentary sequence, above the crystalline basement. The combination of our estimated focal mechanisms, relative relocations of the event hypocentres and the surface displacement patterns observed using InSAR imply that the mainshock and largest aftershock ruptured different fault planes and both contributed to the surface deformation. The fault planes both slipped in horizontally elongated patches, possibly due to rheological layering limiting the updip and downdip extent of rupture. The slip vector of the Murmuri mainshock implies that the decollement beneath the Lorestan Arc is weaker than any such feature beneath the Dezful Embayment, providing an explanation for the plan-view sinuosity of the range-front of the Zagros Mountains

    The 2012 August 11 Ahar earthquakes: consequences for tectonics and earthquake hazard in the Turkish-Iranian Plateau

    Get PDF
    We have examined the faulting in the 2012 August 11 Mw 6.4 and 6.3 Ahar (NW Iran) earthquakes using a combination of field mapping, remote-sensing observations of tectonic geomorphology, the cross-correlation of optical satellite images and the inversion of seismic waveforms. The first event was close to pure strike-slip, and the second was an oblique combination of thrust and strike-slip motion. Mapped surface ruptures indicate at least one of these events accommodated mostly right-lateral strike-slip motion on an ∌E–W striking plane. The occurrence of these earthquakes highlights the spatially distributed deformation in NW Iran, which has implications for both hazard assessment (the Ahar events killed over 300 people and injured over 3000), and also tectonic models of the region. Furthermore, these earthquakes demonstrate that the tectonics of the Ahar area is characterized by strike-slip faulting and a component of shortening, and not the previously suggested extension

    Vitesses et processus des plissements récents dans le Zagros central - Iran

    No full text
    The Zagros fold belt (Iran) results from active collision of the Arabian plate with central Iran. Although the geology and the structure of the Zagros have been studied extensively, the distribution of active deformation and seismotectonic behaviour across the belt remain poorly constrained. We have mapped deformed fluvial terraces along the Dalaki and Mand rivers in the central Zagros, as well as marine terraces along the Persian Gulf, in order to unravel the spatial pattern of vertical displacements and to analyze active deformation and its implications for seismicity. Using appropriate fold models based on structural data allows to efficiently estimate horizontal shortening from tectonic uplift recorded by marine and fluvial terraces. Obtaining well-constrained rates of deformation depends on reliably dating deformed geomorphic markers; by combining different dating techniques (cosmogenic isotopes Be-10 and Cl-36, and C-14 dating of organic material) and making sensible correlations to the regional climate and sea-level history, we propose an internally consistent set of ages, which allow the first geomorphic estimates of shortening rates absorbed by individual structures in the central Zagros. This approach enables us to consider rates of shortening absorbed by various structures in the central Zagros on Late Pleistocene timescales (10,000 to 1,000,000 years). Our results show that shortening on these timescales is concentrated in the frontal part of the belt, consistent with recent GPS data. Three or four frontal structures appear to absorb practically all of the active shortening across the Zagros, suggesting a normal forward-propagating deformation sequence in a thin-skinned tectonic regime during at least the Late Pleistocene, with south-westward migration of the front of the wedge and a predictable evolution of fold structure and kinematics. In addition, comparing the rate and direction of shortening across individual structures with the distribution of seismicity suggests that the sedimentary cover of the frontal Zagros is decoupled from the basement, most probably at the level of the Hormuz Salt. This weak basal detachment level, together with several intermediate weak dĂ©collement levels, appears to be responsible for the overwhelmingly aseismic deformation of the Zagros sedimentary cover.La chaĂźne de montagnes du Zagros (Iran) rĂ©sulte de la collision active de la plaque Arabe avec l'Iran central. Bien que la gĂ©ologie et la structure du Zagros aient Ă©tĂ© Ă©tudiĂ©es de façon intensive, la distribution de la dĂ©formation active Ă  travers la chaĂźne et son comportement sĂ©ismo-tectonique demeurent mal contraints. Nous avons cartographiĂ© des terrasses fluviales dĂ©formĂ©es le long des riviĂšres Dalaki et Mand dans le Zagros central, ainsi que des terrasses marines le long du golfe Persique afin d'Ă©lucider la distribution spatiale des dĂ©placements verticaux et d'analyser la dĂ©formation active et ses implications pour la sĂ©ismicitĂ©. Les terrasses fluviales permettent d'Ă©tablir les vitesses d'incision des riviĂšres, que nous supposons Ă©galer en premiĂšre approximation la vitesse de soulĂšvement, mĂȘme si cette hypothĂšse est discutĂ©e plus en dĂ©tail dans le cas notamment de la partie amont de la Dalaki. En utilisant des modĂšles de pli fondĂ©s sur les donnĂ©es structurales existantes ou collectĂ©es sur le terrain, nous estimons le raccourcissement horizontal nĂ©cessaire pour gĂ©nĂ©rer les soulĂšvements observĂ©s au travers des diffĂ©rentes structures traversĂ©es par les riviĂšres. L'obtention de taux de dĂ©formation dĂ©pend Ă©videmment d'une datation bien contrainte des marqueurs. Nous avons mis en Ɠuvre diffĂ©rentes mĂ©thodes de datation, notamment des datations de temps d'exposition des surfaces par isotopes cosmogĂ©niques (Be-10 et Cl-36) et des datations C-14 de matĂ©riel organique inclus dans les terrasses. Bien que ces mĂ©thodes fournissent des rĂ©sultats de qualitĂ© variable, nous avons pu proposer une sĂ©rie d'Ăąges relativement cohĂ©rents. Cette dĂ©marche nous permet d'estimer les taux de raccourcissement absorbĂ©s par diffĂ©rentes structures dans le Zagros central Ă  des Ă©chelles de temps tardi-PlĂ©istocĂšne (de 10.000 Ă  1.000.000 ans). Nos rĂ©sultats montrent que le raccourcissement du Zagros s'est concentrĂ© durant cette pĂ©riode dans la partie frontale de la chaĂźne, en conformitĂ© avec des donnĂ©es GPS rĂ©centes qui montrent la mĂȘme rĂ©partition de la dĂ©formation active. Trois ou quatre structures frontales semblent absorber pratiquement tout le raccourcissement actif Ă  travers le Zagros, suggĂ©rant que la dĂ©formation s'est propagĂ© vers l'avant-pays dans un rĂ©gime tectonique superficiel pendant au moins le tardi-PlĂ©istocĂšne, avec migration vers le sud-ouest du front du prisme et une Ă©volution prĂ©visible de la structure et la cinĂ©matique des plis au cours du temps. Une comparaison des taux et de la direction de raccourcissement Ă  travers les diffĂ©rentes structures avec la distribution de la sismicitĂ© suggĂšre que la couverture sĂ©dimentaire du Zagros frontal est dĂ©couplĂ©e du socle, le plus probablement au niveau du sel de Hormuz. Ce niveau de dĂ©tachement basal, en combinaison avec plusieurs niveaux de dĂ©collement intermĂ©diaires, serait responsable de la dĂ©formation en grande partie asismique de la couverture sĂ©dimentaire du Zagros

    Rates and processes of active folding in the central Zagros, Iran

    No full text
    La chaĂźne de montagnes du Zagros (Iran) rĂ©sulte de la collision active de la plaque Arabe avec l'Iran central. Bien que la gĂ©ologie et la structure du Zagros aient Ă©tĂ© Ă©tudiĂ©es de façon intensive, la distribution de la dĂ©formation active Ă  travers la chaĂźne et son comportement sĂ©ismo-tectonique demeurent mal contraints. Nous avons cartographiĂ© des terrasses fluviales dĂ©formĂ©es le long des riviĂšres Dalaki et Mand dans le Zagros central, ainsi que des terrasses marines le long du golfe Persique afin d Ă©lucider la distribution spatiale des dĂ©placements verticaux et d analyser la dĂ©formation active et ses implications pour la sĂ©ismicitĂ©. Les terrasses fluviales permettent d Ă©tablir les vitesses d incision des riviĂšres, que nous supposons Ă©galer en premiĂšre approximation la vitesse de soulĂšvement, mĂȘme si cette hypothĂšse est discutĂ©e plus en dĂ©tail dans le cas notamment de la partie amont de la Dalaki. En utilisant des modĂšles de pli fondĂ©s sur les donnĂ©es structurales existantes ou collectĂ©es sur le terrain, nous estimons le raccourcissement horizontal nĂ©cessaire pour gĂ©nĂ©rer les soulĂšvements observĂ©s au travers des diffĂ©rentes structures traversĂ©es par les riviĂšres. L obtention de taux de dĂ©formation dĂ©pend Ă©videmment d une datation bien contrainte des marqueurs. Nous avons mis en Ɠuvre diffĂ©rentes mĂ©thodes de datation, notamment des datations de temps d exposition des surfaces par isotopes cosmogĂ©niques (Be-10 et Cl-36) et des datations C-14 de matĂ©riel organique inclus dans les terrasses. Bien que ces mĂ©thodes fournissent des rĂ©sultats de qualitĂ© variable, nous avons pu proposer une sĂ©rie d Ăąges relativement cohĂ©rents. Cette dĂ©marche nous permet d estimer les taux de raccourcissement absorbĂ©s par diffĂ©rentes structures dans le Zagros central Ă  des Ă©chelles de temps tardi-PlĂ©istocĂšne (de 10.000 Ă  1.000.000 ans). Nos rĂ©sultats montrent que le raccourcissement du Zagros s est concentrĂ© durant cette pĂ©riode dans la partie frontale de la chaĂźne, en conformitĂ© avec des donnĂ©es GPS rĂ©centes qui montrent la mĂȘme rĂ©partition de la dĂ©formation active. Trois ou quatre structures frontales semblent absorber pratiquement tout le raccourcissement actif Ă  travers le Zagros, suggĂ©rant que la dĂ©formation s est propagĂ© vers l avant-pays dans un rĂ©gime tectonique superficiel pendant au moins le tardi-PlĂ©istocĂšne, avec migration vers le sud-ouest du front du prisme et une Ă©volution prĂ©visible de la structure et la cinĂ©matique des plis au cours du temps. Une comparaison des taux et de la direction de raccourcissement Ă  travers les diffĂ©rentes structures avec la distribution de la sismicitĂ© suggĂšre que la couverture sĂ©dimentaire du Zagros frontal est dĂ©couplĂ©e du socle, le plus probablement au niveau du sel de Hormuz. Ce niveau de dĂ©tachement basal, en combinaison avec plusieurs niveaux de dĂ©collement intermĂ©diaires, serait responsable de la dĂ©formation en grande partie asismique de la couverture sĂ©dimentaire du ZagrosThe Zagros fold belt (Iran) results from active collision of the Arabian plate with central Iran. Although the geology and the structure of the Zagros have been studied extensively, the distribution of active deformation and seismotectonic behaviour across the belt remain poorly constrained. We have mapped deformed fluvial terraces along the Dalaki and Mand rivers in the central Zagros, as well as marine terraces along the Persian Gulf, in order to unravel the spatial pattern of vertical displacements and to analyze active deformation and its implications for seismicity. Using appropriate fold models based on structural data allows to efficiently estimate horizontal shortening from tectonic uplift recorded by marine and fluvial terraces. Obtaining well-constrained rates of deformation depends on reliably dating deformed geomorphic markers; by combining different dating techniques (cosmogenic isotopes Be-10 and Cl-36, and C-14 dating of organic material) and making sensible correlations to the regional climate and sea-level history, we propose an internally consistent set of ages, which allow the first geomorphic estimates of shortening rates absorbed by individual structures in the central Zagros. This approach enables us to consider rates of shortening absorbed by various structures in the central Zagros on Late Pleistocene timescales (10,000 to 1,000,000 years). Our results show that shortening on these timescales is concentrated in the frontal part of the belt, consistent with recent GPS data. Three or four frontal structures appear to absorb practically all of the active shortening across the Zagros, suggesting a normal forward-propagating deformation sequence in a thin-skinned tectonic regime during at least the Late Pleistocene, with south-westward migration of the front of the wedge and a predictable evolution of fold structure and kinematics. In addition, comparing the rate and direction of shortening across individual structures with the distribution of seismicity suggests that the sedimentary cover of the frontal Zagros is decoupled from the basement, most probably at the level of the Hormuz Salt. This weak basal detachment level, together with several intermediate weak dĂ©collement levels, appears to be responsible for the overwhelmingly aseismic deformation of the Zagros sedimentary coverGRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    The 2012 August 11 Ahar earthquakes: consequences for tectonics and earthquake hazard in the Turkish-Iranian Plateau

    Get PDF
    We have examined the faulting in the 2012 August 11 Mw 6.4 and 6.3 Ahar (NW Iran) earthquakes using a combination of field mapping, remote-sensing observations of tectonic geomorphology, the cross-correlation of optical satellite images and the inversion of seismic waveforms. The first event was close to pure strike-slip, and the second was an oblique combination of thrust and strike-slip motion. Mapped surface ruptures indicate at least one of these events accommodated mostly right-lateral strike-slip motion on an ∌E–W striking plane. The occurrence of these earthquakes highlights the spatially distributed deformation in NW Iran, which has implications for both hazard assessment (the Ahar events killed over 300 people and injured over 3000), and also tectonic models of the region. Furthermore, these earthquakes demonstrate that the tectonics of the Ahar area is characterized by strike-slip faulting and a component of shortening, and not the previously suggested extension
    corecore