262 research outputs found

    Convolution of multifractals and the local magnetization in a random field Ising chain

    Full text link
    The local magnetization in the one-dimensional random-field Ising model is essentially the sum of two effective fields with multifractal probability measure. The probability measure of the local magnetization is thus the convolution of two multifractals. In this paper we prove relations between the multifractal properties of two measures and the multifractal properties of their convolution. The pointwise dimension at the boundary of the support of the convolution is the sum of the pointwise dimensions at the boundary of the support of the convoluted measures and the generalized box dimensions of the convolution are bounded from above by the sum of the generalized box dimensions of the convoluted measures. The generalized box dimensions of the convolution of Cantor sets with weights can be calculated analytically for certain parameter ranges and illustrate effects we also encounter in the case of the measure of the local magnetization. Returning to the study of this measure we apply the general inequalities and present numerical approximations of the D_q-spectrum. For the first time we are able to obtain results on multifractal properties of a physical quantity in the one-dimensional random-field Ising model which in principle could be measured experimentally. The numerically generated probability densities for the local magnetization show impressively the gradual transition from a monomodal to a bimodal distribution for growing random field strength h.Comment: An error in figure 1 was corrected, small additions were made to the introduction and the conclusions, some typos were corrected, 24 pages, LaTeX2e, 9 figure

    Orbits and phase transitions in the multifractal spectrum

    Full text link
    We consider the one dimensional classical Ising model in a symmetric dichotomous random field. The problem is reduced to a random iterated function system for an effective field. The D_q-spectrum of the invariant measure of this effective field exhibits a sharp drop of all D_q with q < 0 at some critical strength of the random field. We introduce the concept of orbits which naturally group the points of the support of the invariant measure. We then show that the pointwise dimension at all points of an orbit has the same value and calculate it for a class of periodic orbits and their so-called offshoots as well as for generic orbits in the non-overlapping case. The sharp drop in the D_q-spectrum is analytically explained by a drastic change of the scaling properties of the measure near the points of a certain periodic orbit at a critical strength of the random field which is explicitly given. A similar drastic change near the points of a special family of periodic orbits explains a second, hitherto unnoticed transition in the D_q-spectrum. As it turns out, a decisive role in this mechanism is played by a specific offshoot. We furthermore give rigorous upper and/or lower bounds on all D_q in a wide parameter range. In most cases the numerically obtained D_q coincide with either the upper or the lower bound. The results in this paper are relevant for the understanding of random iterated function systems in the case of moderate overlap in which periodic orbits with weak singularity can play a decisive role.Comment: The article has been completely rewritten; the title has changed; a section about the typical pointwise dimension as well as several references and remarks about more general systems have been added; to appear in J. Phys. A; 25 pages, 11 figures, LaTeX2

    Randomly Evolving Idiotypic Networks: Structural Properties and Architecture

    Full text link
    We consider a minimalistic dynamic model of the idiotypic network of B-lymphocytes. A network node represents a population of B-lymphocytes of the same specificity (idiotype), which is encoded by a bitstring. The links of the network connect nodes with complementary and nearly complementary bitstrings, allowing for a few mismatches. A node is occupied if a lymphocyte clone of the corresponding idiotype exists, otherwise it is empty. There is a continuous influx of new B-lymphocytes of random idiotype from the bone marrow. B-lymphocytes are stimulated by cross-linking their receptors with complementary structures. If there are too many complementary structures, steric hindrance prevents cross-linking. Stimulated cells proliferate and secrete antibodies of the same idiotype as their receptors, unstimulated lymphocytes die. Depending on few parameters, the autonomous system evolves randomly towards patterns of highly organized architecture, where the nodes can be classified into groups according to their statistical properties. We observe and describe analytically the building principles of these patterns, which allow to calculate number and size of the node groups and the number of links between them. The architecture of all patterns observed so far in simulations can be explained this way. A tool for real-time pattern identification is proposed.Comment: 19 pages, 15 figures, 4 table

    Randomly Evolving Idiotypic Networks: Modular Mean Field Theory

    Full text link
    We develop a modular mean field theory for a minimalistic model of the idiotypic network. The model comprises the random influx of new idiotypes and a deterministic selection. It describes the evolution of the idiotypic network towards complex modular architectures, the building principles of which are known. The nodes of the network can be classified into groups of nodes, the modules, which share statistical properties. Each node experiences only the mean influence of the groups to which it is linked. Given the size of the groups and linking between them the statistical properties such as mean occupation, mean life time, and mean number of occupied neighbors are calculated for a variety of patterns and compared with simulations. For a pattern which consists of pairs of occupied nodes correlations are taken into account.Comment: 14 pages, 8 figures, 4 table

    Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern forming system

    Full text link
    Noise driven electroconvection in sandwich cells of nematic liquid crystals exhibits on-off intermittent behaviour at the onset of the instability. We study laser scattering of convection rolls to characterize the wavelengths and the trajectories of the stochastic amplitudes of the intermittent structures. The pattern wavelengths and the statistics of these trajectories are in quantitative agreement with simulations of the linearized electrohydrodynamic equations. The fundamental τ−3/2\tau^{-3/2} distribution law for the durations τ\tau of laminar phases as well as the power law of the amplitude distribution of intermittent bursts are confirmed in the experiments. Power spectral densities of the experimental and numerically simulated trajectories are discussed.Comment: 20 pages and 17 figure

    Measurement of CP Asymmetries and Branching Fractions in Charmless Two-Body B-Meson Decays to Pions and Kaons

    Get PDF
    We present improved measurements of CP-violation parameters in the decays B0→π+π−B^0 \to \pi^+ \pi^-, B0→K+π−B^0 \to K^+ \pi^-, and B0→π0π0B^0 \to \pi^0 \pi^0, and of the branching fractions for B0→π0π0B^0 \to \pi^0 \pi^0 and B0→K0π0B^0 \to K^0 \pi^0. The results are obtained with the full data set collected at the ΄(4S)\Upsilon(4S) resonance by the BABAR experiment at the PEP-II asymmetric-energy BB factory at the SLAC National Accelerator Laboratory, corresponding to 467±5467 \pm 5 million BBˉB\bar B pairs. We find the CP-violation parameter values and branching fractions Sπ+π−=−0.68±0.10±0.03,Cπ+π−=−0.25±0.08±0.02,AK−π+=−0.107±0.016−0.004+0.006,Cπ0π0=−0.43±0.26±0.05,Br(B0→π0π0)=(1.83±0.21±0.13)×10−6,Br(B0→K0π0)=(10.1±0.6±0.4)×10−6, S_{\pi^+\pi^-} = -0.68 \pm 0.10 \pm 0.03, C_{\pi^+\pi^-} = -0.25 \pm 0.08 \pm 0.02, A_{K^-\pi^+} = -0.107 \pm 0.016 ^{+0.006}_{-0.004}, C_{\pi^0\pi^0} = -0.43 \pm 0.26 \pm 0.05, Br(B^0 \to \pi^0 \pi^0) = (1.83 \pm 0.21 \pm 0.13) \times 10^{-6}, Br(B^0 \to K^0 \pi^0) = (10.1 \pm 0.6 \pm 0.4) \times 10^{-6}, where in each case, the first uncertainties are statistical and the second are systematic. We observe CP violation with a significance of 6.7 standard deviations for B0→π+π−B^0 \to\pi^+\pi^- and 6.1 standard deviations for B0→K+π−B^0 \to K^+ \pi^-, including systematic uncertainties. Constraints on the Unitarity Triangle angle α\alpha are determined from the isospin relations among the B→ππB \to \pi\pi rates and asymmetries. Considering only the solution preferred by the Standard Model, we find α\alpha to be in the range [71∘,109∘][71^\circ,109^\circ] at the 68% confidence level.Comment: 18 pages, 11 postscript figures, submitted to Phys. Rev.

    Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-

    Get PDF
    In a sample of 471 million BB events collected with the BABAR detector at the PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is either e+e- or mu+mu-. We report results on partial branching fractions and isospin asymmetries in seven bins of di-lepton mass-squared. We further present CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi resonance. We find no evidence for CP or lepton-flavor violation. The partial branching fractions and isospin asymmetries are consistent with the Standard Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.

    Observation of time-reversal violation in the B0 meson system

    Get PDF
    The individually named authors work collectively as The BABAR Collaboration. Copyright @ 2012 American Physical Society.Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states (B0 or BÂŻÂŻÂŻ0), and J/ψK0L or ccÂŻK0S final states (referred to as B+ or B−), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, BÂŻÂŻÂŻ0→B− and B−→BÂŻÂŻÂŻ0, as a function of the time difference between the two B decays. Using 468×106 BBÂŻÂŻÂŻ pairs produced in ΄(4S) decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding ΔS+T=−1.37±0.14(stat)±0.06(syst) and ΔS−T=1.17±0.18(stat)±0.11(syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG(Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel)
    • 

    corecore