262 research outputs found
Convolution of multifractals and the local magnetization in a random field Ising chain
The local magnetization in the one-dimensional random-field Ising model is
essentially the sum of two effective fields with multifractal probability
measure. The probability measure of the local magnetization is thus the
convolution of two multifractals. In this paper we prove relations between the
multifractal properties of two measures and the multifractal properties of
their convolution. The pointwise dimension at the boundary of the support of
the convolution is the sum of the pointwise dimensions at the boundary of the
support of the convoluted measures and the generalized box dimensions of the
convolution are bounded from above by the sum of the generalized box dimensions
of the convoluted measures. The generalized box dimensions of the convolution
of Cantor sets with weights can be calculated analytically for certain
parameter ranges and illustrate effects we also encounter in the case of the
measure of the local magnetization. Returning to the study of this measure we
apply the general inequalities and present numerical approximations of the
D_q-spectrum. For the first time we are able to obtain results on multifractal
properties of a physical quantity in the one-dimensional random-field Ising
model which in principle could be measured experimentally. The numerically
generated probability densities for the local magnetization show impressively
the gradual transition from a monomodal to a bimodal distribution for growing
random field strength h.Comment: An error in figure 1 was corrected, small additions were made to the
introduction and the conclusions, some typos were corrected, 24 pages,
LaTeX2e, 9 figure
Orbits and phase transitions in the multifractal spectrum
We consider the one dimensional classical Ising model in a symmetric
dichotomous random field. The problem is reduced to a random iterated function
system for an effective field. The D_q-spectrum of the invariant measure of
this effective field exhibits a sharp drop of all D_q with q < 0 at some
critical strength of the random field. We introduce the concept of orbits which
naturally group the points of the support of the invariant measure. We then
show that the pointwise dimension at all points of an orbit has the same value
and calculate it for a class of periodic orbits and their so-called offshoots
as well as for generic orbits in the non-overlapping case. The sharp drop in
the D_q-spectrum is analytically explained by a drastic change of the scaling
properties of the measure near the points of a certain periodic orbit at a
critical strength of the random field which is explicitly given. A similar
drastic change near the points of a special family of periodic orbits explains
a second, hitherto unnoticed transition in the D_q-spectrum. As it turns out, a
decisive role in this mechanism is played by a specific offshoot. We
furthermore give rigorous upper and/or lower bounds on all D_q in a wide
parameter range. In most cases the numerically obtained D_q coincide with
either the upper or the lower bound. The results in this paper are relevant for
the understanding of random iterated function systems in the case of moderate
overlap in which periodic orbits with weak singularity can play a decisive
role.Comment: The article has been completely rewritten; the title has changed; a
section about the typical pointwise dimension as well as several references
and remarks about more general systems have been added; to appear in J. Phys.
A; 25 pages, 11 figures, LaTeX2
Randomly Evolving Idiotypic Networks: Structural Properties and Architecture
We consider a minimalistic dynamic model of the idiotypic network of
B-lymphocytes. A network node represents a population of B-lymphocytes of the
same specificity (idiotype), which is encoded by a bitstring. The links of the
network connect nodes with complementary and nearly complementary bitstrings,
allowing for a few mismatches. A node is occupied if a lymphocyte clone of the
corresponding idiotype exists, otherwise it is empty. There is a continuous
influx of new B-lymphocytes of random idiotype from the bone marrow.
B-lymphocytes are stimulated by cross-linking their receptors with
complementary structures. If there are too many complementary structures,
steric hindrance prevents cross-linking. Stimulated cells proliferate and
secrete antibodies of the same idiotype as their receptors, unstimulated
lymphocytes die.
Depending on few parameters, the autonomous system evolves randomly towards
patterns of highly organized architecture, where the nodes can be classified
into groups according to their statistical properties. We observe and describe
analytically the building principles of these patterns, which allow to
calculate number and size of the node groups and the number of links between
them. The architecture of all patterns observed so far in simulations can be
explained this way. A tool for real-time pattern identification is proposed.Comment: 19 pages, 15 figures, 4 table
Randomly Evolving Idiotypic Networks: Modular Mean Field Theory
We develop a modular mean field theory for a minimalistic model of the
idiotypic network. The model comprises the random influx of new idiotypes and a
deterministic selection. It describes the evolution of the idiotypic network
towards complex modular architectures, the building principles of which are
known. The nodes of the network can be classified into groups of nodes, the
modules, which share statistical properties. Each node experiences only the
mean influence of the groups to which it is linked. Given the size of the
groups and linking between them the statistical properties such as mean
occupation, mean life time, and mean number of occupied neighbors are
calculated for a variety of patterns and compared with simulations. For a
pattern which consists of pairs of occupied nodes correlations are taken into
account.Comment: 14 pages, 8 figures, 4 table
Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern forming system
Noise driven electroconvection in sandwich cells of nematic liquid crystals
exhibits on-off intermittent behaviour at the onset of the instability. We
study laser scattering of convection rolls to characterize the wavelengths and
the trajectories of the stochastic amplitudes of the intermittent structures.
The pattern wavelengths and the statistics of these trajectories are in
quantitative agreement with simulations of the linearized electrohydrodynamic
equations. The fundamental distribution law for the durations
of laminar phases as well as the power law of the amplitude distribution
of intermittent bursts are confirmed in the experiments. Power spectral
densities of the experimental and numerically simulated trajectories are
discussed.Comment: 20 pages and 17 figure
Measurement of CP Asymmetries and Branching Fractions in Charmless Two-Body B-Meson Decays to Pions and Kaons
We present improved measurements of CP-violation parameters in the decays
, , and , and of
the branching fractions for and . The
results are obtained with the full data set collected at the
resonance by the BABAR experiment at the PEP-II asymmetric-energy factory
at the SLAC National Accelerator Laboratory, corresponding to
million pairs. We find the CP-violation parameter values and
branching fractions where in each case, the first uncertainties are statistical
and the second are systematic. We observe CP violation with a significance of
6.7 standard deviations for and 6.1 standard deviations for
, including systematic uncertainties. Constraints on the
Unitarity Triangle angle are determined from the isospin relations
among the rates and asymmetries. Considering only the solution
preferred by the Standard Model, we find to be in the range
at the 68% confidence level.Comment: 18 pages, 11 postscript figures, submitted to Phys. Rev.
Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-
In a sample of 471 million BB events collected with the BABAR detector at the
PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is
either e+e- or mu+mu-. We report results on partial branching fractions and
isospin asymmetries in seven bins of di-lepton mass-squared. We further present
CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi
resonance. We find no evidence for CP or lepton-flavor violation. The partial
branching fractions and isospin asymmetries are consistent with the Standard
Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.
Recommended from our members
Measurement of B(B-->X_s {\gamma}), the B-->X_s {\gamma} photon energy spectrum, and the direct CP asymmetry in B-->X_{s+d} {\gamma} decays
The photon spectrum in B --> X_s {\gamma} decay, where X_s is any strange
hadronic state, is studied using a data sample of (382.8\pm 4.2) \times 10^6
e^+ e^- --> \Upsilon(4S) --> BBbar events collected by the BABAR experiment at
the PEP-II collider. The spectrum is used to measure the branching fraction B(B
--> X_s \gamma) = (3.21 \pm 0.15 \pm 0.29 \pm 0.08)\times 10^{-4} and the
first, second, and third moments = 2.267 \pm 0.019 \pm 0.032 \pm
0.003 GeV,, )^2> = 0.0484 \pm 0.0053 \pm 0.0077 \pm
0.0005 GeV^2, and )^3> = -0.0048 \pm 0.0011 \pm 0.0011
\pm 0.0004 GeV^3, for the range E_\gamma > 1.8 GeV, where E_{\gamma} is the
photon energy in the B-meson rest frame. Results are also presented for
narrower E_{\gamma} ranges. In addition, the direct CP asymmetry A_{CP}(B -->
X_{s+d} \gamma) is measured to be 0.057 \pm 0.063. The spectrum itself is also
unfolded to the B-meson rest frame; that is the frame in which theoretical
predictions for its shape are made.Comment: 37 pages, 19 postscript figures, submitted to Phys. Rev. D. No
analysis or results have changed from previous version. Some changes to
improve clarity based on interactions with Phys. Rev. D referees, including
one new Figure (Fig. 13), and some minor wording/punctuation/spelling
mistakes fixe
Recommended from our members
Precise Measurement of the e+ e- --> pi+ pi- (gamma) Cross Section with the Initial-State Radiation Method at BABAR
A precise measurement of the cross section of the process
from threshold to an energy of 3GeV is obtained
with the initial-state radiation (ISR) method using 232fb of data
collected with the BaBar detector at center-of-mass energies near
10.6GeV. The ISR luminosity is determined from a study of the leptonic process
, which is found to agree with the
next-to-leading-order QED prediction to within 1.1%. The cross section for the
process is obtained with a systematic uncertainty
of 0.5% in the dominant resonance region. The leading-order hadronic
contribution to the muon magnetic anomaly calculated using the measured
cross section from threshold to 1.8GeV is .Comment: 58 pages, 56 figures, to be submitted to Phys. Rev.
Observation of time-reversal violation in the B0 meson system
The individually named authors work collectively as The BABAR Collaboration. Copyright @ 2012 American Physical Society.Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states (B0 or BÂŻÂŻÂŻ0), and J/ÏK0L or ccÂŻK0S final states (referred to as B+ or Bâ), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, BÂŻÂŻÂŻ0âBâ and BââBÂŻÂŻÂŻ0, as a function of the time difference between the two B decays. Using 468Ă106 BBÂŻÂŻÂŻ pairs produced in ΄(4S) decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding ÎS+T=â1.37±0.14(stat)±0.06(syst) and ÎSâT=1.17±0.18(stat)±0.11(syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and
DFG(Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MINECO (Spain), STFC
(United Kingdom). Individuals have received support from
the Marie Curie EIF (European Union), the A. P. Sloan
Foundation (USA) and the Binational Science Foundation
(USA-Israel)
- âŠ