18 research outputs found

    Oncogenic analysis of TRF2 in the murine hematopoietic system

    Get PDF
    [no abstract

    Moderate expression of TRF2 in the hematopoietic system increases development of large cell blastic T-cell lymphomas

    Get PDF
    The telomeric repeat binding factor 2 (TRF2) plays a central role in the protection of chromosome ends by inhibiting telomeres from initiating a DNA damage cascade. TRF2 overexpression has been suggested to induce tumor development in the mouse, and TRF2 levels have been found increased in human tumors. Here we tested whether moderate expression of TRF2 in the hematopoietic system leads to cancer development in the mouse. TRF2 and a GFP-TRF2 fusion protein were introduced into hematopoietic precursors, and tested for function. TRF2 overexpressing cells were integrated into the hematopoietic system of C57BL/6J recipient mice, and animals were put on tumor watch. An increase in the development of T-cell lymphomas was observed in secondary recipient animals, however, overexpression of the TRF2 transgene was not detectable anymore in the tumors. The tumors were characterized as large cell blastic T-cell lymphomas and displayed signs of genome instability as evidenced by chromosome fusions. However, the rate of lymphoma development in TRF2-overexpressing animals was low, suggesting the TRF2 does not serve as a dominant oncogene in the system used

    2-Amino-4-aryl-5-oxo-4,5-dihydropyrano[3,2-c]chromene-3-carbonitriles with Microtubule-Disruptive, Centrosome-Declustering, and Antiangiogenic Effects in vitro and in vivo

    Get PDF
    A series of fifteen 2‐amino‐4‐aryl‐5‐oxo‐4,5‐dihydropyrano[3,2‐c]chromene‐3‐carbonitriles (1 a–o) were synthesized via a three‐component reaction of 4‐hydroxycoumarin, malononitrile, and diversely substituted benzaldehydes or pyridine carbaldehydes. The compounds were tested for anticancer activities against a panel of eight human tumor cell lines. A few derivatives with high antiproliferative activities and different cancer cell specificity were identified and investigated for their modes of action. They led to microtubule disruption, centrosome de‐clustering and G2/M cell cycle arrest in 518 A2 melanoma cells. They also showed anti‐angiogenic effects in vitro and in vivo

    Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

    Get PDF
    publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc

    Multimodal 4-arylchromene derivatives with microtubule-destabilizing, anti-angiogenic, and MYB-inhibitory activities

    No full text
    Aim: Efficient and readily available anticancer drugs are sought as treatment options. For this reason, chromene derivatives were prepared using the one-pot reaction and tested for their anticancer and anti-angiogenic properties.Methods: 2-Amino-3-cyano-4-(aryl)-7-methoxy-4H-chromene compounds (2A-R) were repurposed or newly synthesized via a three-component reaction of 3-methoxyphenol, various aryl aldehydes, and malononitrile. We performed assays to study the inhibition of tumor cell growth [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromid (MTT) assay], effects on microtubules (immunofluorescence), cell cycle (flow-activated cell sorting analysis), angiogenesis (zebrafish model), and MYB activity (luciferase reporter assay). Fluorescence microscopy was applied for localization studies via copper-catalyzed azide-alkyne click reaction of an alkyne-tagged drug derivative.Results: Compounds 2A-C and 2F exhibited robust antiproliferative activities against several human cancer cell lines (50% inhibitory concentrations in the low nanomolar range) and showed potent MYB inhibition. The alkyne derivative 3 was localized in the cytoplasm after only 10 min of incubation. Substantial microtubule disruption and G2/M cell-cycle arrest were observed, where compound 2F stood out as a promising microtubule-disrupting agent. The study of anti-angiogenic properties showed that 2A was the only candidate with a high potential to inhibit blood vessel formation in vivo.Conclusion: The close interplay of various mechanisms, including cell-cycle arrest, MYB inhibition, and anti-angiogenic activity, led to identifying promising multimodal anticancer drug candidates
    corecore