5,221 research outputs found
Performance-based control system design automation via evolutionary computing
This paper develops an evolutionary algorithm (EA) based methodology for computer-aided control system design (CACSD)
automation in both the time and frequency domains under performance satisfactions. The approach is automated by efficient
evolution from plant step response data, bypassing the system identification or linearization stage as required by conventional
designs. Intelligently guided by the evolutionary optimization, control engineers are able to obtain a near-optimal ‘‘off-thecomputer’’
controller by feeding the developed CACSD system with plant I/O data and customer specifications without the need of
a differentiable performance index. A speedup of near-linear pipelineability is also observed for the EA parallelism implemented on
a network of transputers of Parsytec SuperCluster. Validation results against linear and nonlinear physical plants are convincing,
with good closed-loop performance and robustness in the presence of practical constraints and perturbations
Robust and powerful tests for nonlinear deterministic components
We develop a test for the presence of nonlinear deterministic components in a univariate time series, approximated using a Fourier series expansion, designed to be asymptotically robust to the order of integration of the process and to any weak dependence present. Our approach is motivated by the Wald-based testing procedure of Harvey, Leybourne and Xiao (2010) [Journal of Time Series Analysis, vol. 31, p.379-391], but uses a function of an auxiliary unit root statistic to select between the asymptotic I(0) and I(1) critical values, rather than modifying the Wald test statistic as in Harvey et al.. We show that our proposed test has uniformly greater local asymptotic power than the test of Harvey et al. when the shocks are I(1), identical local asymptotic power when the shocks are I(0), and also improved .nite sample properties. We also consider the issue of determining the number of Fourier frequencies used to specify any nonlinear deterministic components, evaluating the performance of algorithmic- and information criterion-based model selection procedures
Can Antiviral Drugs Contain Pandemic Influenza Transmission?
Antiviral drugs dispensed during the 2009 influenza pandemic generally failed to
contain transmission. This poses the question of whether preparedness for a
future pandemic should include plans to use antiviral drugs to mitigate
transmission
A Chandra Observation of Supernova Remnant G350.1-0.3 and Its Central Compact Object
We present a new Chandra observation of supernova remnant (SNR) G350.1-0.3.
The high resolution X-ray data reveal previously unresolved filamentary
structures and allow us to perform detailed spectroscopy in the diffuse regions
of this SNR. Spectral analysis demonstrates that the region of brightest
emission is dominated by hot, metal-rich ejecta while the ambient material
along the perimeter of the ejecta region and throughout the remnant's western
half is mostly low-temperature, shocked interstellar/circumstellar medium
(ISM/CSM) with solar-type composition. The data reveal that the emission
extends far to the west of the ejecta region and imply a lower limit of 6.6 pc
on the diameter of the source (at a distance of 4.5 kpc). We show that
G350.1-0.3 is likely in the free expansion (ejecta-dominated) stage and
calculate an age of 600-1200 years. The derived relationship between the shock
velocity and the electron/proton temperature ratio is found to be entirely
consistent with that of other SNRs. We perform spectral fits on the X-ray
source XMMU J172054.5-372652, a candidate central compact object (CCO), and
find that its spectral properties fall within the typical range of other CCOs.
We also present archival 24 um data of G350.1-0.3 taken with the Spitzer Space
Telescope during the MIPSGAL galactic survey and find that the infrared and
X-ray morphologies are well-correlated. These results help to explain this
remnant's peculiar asymmetries and shed new light on its dynamics and
evolution
Progressive collapse analysis of steel structures under fire conditions
This is the post-print version of the final paper published in Engineering Structures. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.In this paper a robust static-dynamic procedure has been developed. The development extends the capability of the Vulcan software to model the dynamic and static behaviour of steel buildings during both local and global progressive collapse of the structures under fire conditions. The explicit integration method was adopted in the dynamic procedure. This model can be utilized to allow a structural analysis to continue beyond the temporary instabilities which would cause singularities in the full static analyses. The automatic switch between static and dynamic analysis makes the Vulcan a powerful tool to investigate the mechanism of the progressive collapse of the structures generated by the local failure of components. The procedure was validated against several practical cases. Some preliminary studies of the collapse mechanism of steel frame due to columns’ failure under fire conditions are also presented. It is concluded that for un-braced frame the lower loading ratio and bigger beam section can give higher failure temperature in which the global structural collapse happens. However, the localised collapse of the frame with the higher loading ratio and smaller beam section can more easily be generated. The bracing system is helpful to prevent the frame from progressive collapse. The higher lateral stiffness of the frame can generate the smaller vertical deformation of the failed column at the re-stable position. However, the global failure temperature of the frame is not sensitive to the lateral stiffness of the frame
Antigenic variation in <i>Trypanosoma brucei</i>: joining the DOTs
African trypanosomes, such as <i>Trypanosoma brucei</i>, are protistan parasites that cause sleeping sickness. Though first described more than a century ago, trypanosomes remain a blight on the health of the human population and on the economy of sub-Saharan Africa. <i>T. brucei</i> replicates in the bloodstream of infected mammals and traverses the blood-brain barrier to enter the central nervous system in the late, frequently fatal, stages of the disease. Because of its extracellular lifestyle, <i>T. brucei</i> is continuously exposed to antibody challenge. To circumvent this, the parasite uses antigenic variation of a surface protein named the variant surface glycoprotein (VSG). Around 107 VSG molecules are expressed on the parasite's cell surface, creating a dense coat that prevents adaptive immunity from detecting or accessing invariant antigens. However, antibodies against the expressed VSG are generated, and periodic switches to an immunologically distinct VSG coat are necessary for parasite survival. Such switches are pre-emptive of the immune response and contribute to the pattern of trypanosome growth seen in an infected host (Figure 1): parasite numbers increase, but then drop as VSG-specific antibodies are raised by the host. Cells that have switched to another VSG coat survive this killing and seed the outgrowth of a subsequent peak of parasites, which is again decimated by anti-VSG immune killing. As a survival strategy, antigenic variation succeeds by prolonging the time that the parasite
A Computationally Efficient Model for Pedestrian Motion Prediction
We present a mathematical model to predict pedestrian motion over a finite horizon, intended for use in collision avoidance algorithms for autonomous driving. The model is based on a road map structure, and assumes a rational pedestrian behavior. We compare our model with the state-of-the art and discuss its accuracy, and limitations, both in simulations and in comparison to real data
M Dwarfs in SDSS Stripe 82: Photometric Light Curves and Flare Rate Analysis
We present a flare rate analysis of 50,130 M dwarf light curves in SDSS
Stripe 82. We identified 271 flares using a customized variability index to
search ~2.5 million photometric observations for flux increases in the u- and
g-bands. Every image of a flaring observation was examined by eye and with a
PSF-matching and image subtraction tool to guard against false positives.
Flaring is found to be strongly correlated with the appearance of H-alpha in
emission in the quiet spectrum. Of the 99 flare stars that have spectra, we
classify 8 as relatively inactive. The flaring fraction is found to increase
strongly in stars with redder colors during quiescence, which can be attributed
to the increasing flare visibility and increasing active fraction for redder
stars. The flaring fraction is strongly correlated with |Z| distance such that
most stars that flare are within 300 pc of the Galactic plane. We derive flare
u-band luminosities and find that the most luminous flares occur on the
earlier-type M dwarfs. Our best estimate of the lower limit on the flaring rate
(averaged over Stripe 82) for flares with \Delta u \ge 0.7 magnitudes on stars
with u < 22 is 1.3 flares hour^-1 square degree^-1 but can vary significantly
with the line-of-sight.Comment: 44 pages, 13 figure
Cosmic Microwave Background Polarization and reionization: constraining models with a double reionization
Neutral hydrogen around high-z QSO and an optical depth tau ~ 0.17 can be
reconciled if reionization is more complex than a single transition at z ~ 6-8.
Tracing its details could shed a new light on the first sources of radiation.
Here we discuss how far such details can be inspected through planned
experiments on CMB large-scale anisotropy and polarization, by simulating an
actual data analysis. By considering a set of double reionization histories of
Cen (2003) type, a relevant class of models not yet considered by previous
works, we confirm that large angle experiments rival high resolution ones in
reconstructing the reionization history. We also confirm that reionization
histories, studied with the prior of a single and sharp reionization, yield a
biased tau, showing that this bias is generic. We further find a monotonic
trend in the bias for the models that we consider, and propose an explanation
of the trend, as well as the overall bias. We also show that in long-lived
experiments such a trend can be used to discriminate between single and double
reionization patterns.Comment: 8 pages, 11 figures. Substantial rewriting, replaced with accepted
version. To be published in A&
- …