14 research outputs found

    Microfiber Drug/Gene Delivery Platform for Study of Myelination

    Get PDF
    Our ability to rescue functional deficits after demyelinating diseases or spinal cord injuries is limited by our lack of understanding of the complex remyelination process, which is crucial to functional recovery. In this study, we developed an electrospun suspended poly(Δ-caprolactone) microfiber platform to enable the screening of therapeutics for remyelination. As a proof of concept, this platform employed scaffold-mediated non-viral delivery of a microRNA (miR) cocktail to promote oligodendrocyte precursor cells (OPCs) differentiation and myelination. We observed enhanced OPCs differentiation when the cells were transfected with miR-219 and miR-338 on the microfiber substrates. Moreover, miRs promoted the formation of MBP+ tubular extensions around the suspended fibers, which was indicative of myelination, instead of flat myelin membranes on 2D substrates. In addition, OPCs that were transfected with the cocktail of miRs formed significantly longer and larger amounts of MBP+ extensions. Taken together, these results demonstrate the efficacy of this functional screening platform for understanding myelination.MOE (Min. of Education, S’pore)NMRC (Natl Medical Research Council, S’pore)Accepted versio

    Biomimicking Fiber Platform with Tunable Stiffness to Study Mechanotransduction Reveals Stiffness Enhances Oligodendrocyte Differentiation but Impedes Myelination through YAP-dependent Regulation

    Get PDF
    A key hallmark of many diseases, especially those in the central nervous system (CNS), is the change in tissue stiffness due to inflammation and scarring. However, how such changes in microenvironment affect the regenerative process remains poorly understood. Here, a biomimicking fiber platform that provides independent variation of fiber structural and intrinsic stiffness is reported. To demonstrate the functionality of these constructs as a mechanotransduction study platform, these substrates are utilized as artificial axons and the effects of axon structural versus intrinsic stiffness on CNS myelination are independently analyzed. While studies have shown that substrate stiffness affects oligodendrocyte differentiation, the effects of mechanical stiffness on the final functional state of oligodendrocyte (i.e., myelination) has not been shown prior to this. Here, it is demonstrated that a stiff mechanical microenvironment impedes oligodendrocyte myelination, independently and distinctively from oligodendrocyte differentiation. Yes-associated protein is identified to be involved in influencing oligodendrocyte myelination through mechanotransduction. The opposing effects on oligodendrocyte differentiation and myelination provide important implications for current work screening for promyelinating drugs, since these efforts have focused mainly on promoting oligodendrocyte differentiation. Thus, the platform may have considerable utility as part of a drug discovery program in identifying molecules that promote both differentiation and myelination

    Role of activin receptors in driving central nervous system regeneration of myelin

    Get PDF
    Myelin damage in central nervous system white matter disorders such as multiple sclerosis (MS) leads to axonal dysfunction/degeneration and clinical disability. Regeneration of myelin (termed remyelination) can occur and requires oligodendrocyte progenitor cells (OPCs) to differentiate into mature oligodendrocytes, which are then able to make contact with axons and ensheath them. However, this process fails in progressive MS. The lack of approved therapies aimed at promoting remyelination highlight the need to identify mechanisms driving this regenerative process to develop novel therapeutic strategies. Previous work in the lab identified the TGF-ÎČ superfamily member activin-A as being increased during remyelination in vivo and sufficient in stimulating activin receptor-driven OPC differentiation into mature oligodendrocytes in vitro. Here, these studies were followed up by undertaking a comprehensive assessment of the role of activin receptors and their ligands during remyelination. Using an ex vivo brain explant model of demyelination, the stimulation of activin receptors using activin-A was sufficient to enhance remyelination. Blocking activin receptors using an endogenous inhibitor (Inhibin) hindered remyelination, demonstrating the requirement of activin receptor signalling for this process. Surprisingly, blocking the binding of endogenous activin-A to activin receptors using follistatin did not impact remyelination, suggesting that other activin receptor ligands are involved in driving remyelination. As activin receptors may bind other ligands in the TGF-ÎČ superfamily, the expression and function of alternative ligands was investigated, and each was found to be important for remyelination (albeit with distinct timing/ effects). Both activin receptors and their ligands were expressed on microglia/macrophages in mouse and human disease tissue. Finally, analysis of activin receptor expression on oligodendrocytes in human tissue revealed potential functional differences between receptor subtypes. Together, these results demonstrate previously undefined roles of a subset of TGF-ÎČ superfamily members in regulating remyelination, and have implications for the development of novel approaches to enhancing remyelination in disease

    CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes

    Get PDF
    SummarySince Río-Hortega’s description of oligodendrocyte morphologies nearly a century ago, many studies have observed myelin sheath-length diversity between CNS regions [1–3]. Myelin sheath length directly impacts axonal conduction velocity by influencing the spacing between nodes of Ranvier. Such differences likely affect neural signal coordination and synchronization [4]. What accounts for regional differences in myelin sheath lengths is unknown; are myelin sheath lengths determined solely by axons or do intrinsic properties of different oligodendrocyte precursor cell populations affect length? The prevailing view is that axons provide molecular cues necessary for oligodendrocyte myelination and appropriate sheath lengths. This view is based upon the observation that axon diameters correlate with myelin sheath length [1, 5, 6], as well as reports that PNS axonal neuregulin-1 type III regulates the initiation and properties of Schwann cell myelin sheaths [7, 8]. However, in the CNS, no such instructive molecules have been shown to be required, and increasing in vitro evidence supports an oligodendrocyte-driven, neuron-independent ability to differentiate and form initial sheaths [9–12]. We test this alternative signal-independent hypothesis—that variation in internode lengths reflects regional oligodendrocyte-intrinsic properties. Using microfibers, we find that oligodendrocytes have a remarkable ability to self-regulate the formation of compact, multilamellar myelin and generate sheaths of physiological length. Our results show that oligodendrocytes respond to fiber diameters and that spinal cord oligodendrocytes generate longer sheaths than cortical oligodendrocytes on fibers, co-cultures, and explants, revealing that oligodendrocytes have regional identity and generate different sheath lengths that mirror internodes in vivo

    A PLA1-2 punch regulates the Golgi complex

    Get PDF
    The mammalian Golgi complex, trans Golgi network (TGN) and ER-Golgi-Intermediate Compartment (ERGIC) are comprised of membrane cisternae, coated vesicles and membrane tubules, all of which contribute to membrane trafficking and maintenance of their unique architectures. Recently, a new cast of players was discovered to regulate the Golgi and ERGIC: four unrelated cytoplasmic phospholipase A (PLA) enzymes, cPLA(2)α (GIVA cPLA(2)), PAFAH Ib (GVIII PLA(2)), iPLA(2)-ÎČ (GVIA-2 iPLA(2)), and iPLA(1)Îł. These ubiquitously expressed enzymes regulate membrane trafficking from specific Golgi subcompartments, although there is evidence for some functional redundancy between PAFAH Ib and cPLA(2)α. Three of these enzymes, PAFAH Ib, cPLA(2)α, and iPLA(2)-ÎČ, exert effects on Golgi structure and function by inducing the formation of membrane tubules. Here, we review our current understanding of how PLA enzymes regulate Golgi and ERGIC morphology and function

    Selective PDE4 subtype inhibition provides new opportunities to intervene in neuroinflammatory versus myelin damaging hallmarks of multiple sclerosis.

    Get PDF
    Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct PDE4D isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that pde4d1/2 and pde4d6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS

    The phospholipase complex PAFAH Ib regulates the functional organization of the Golgi complex

    Get PDF
    We report that platelet-activating factor acetylhydrolase (PAFAH) Ib, comprised of two phospholipase A(2) (PLA(2)) subunits, α1 and α2, and a third subunit, the dynein regulator lissencephaly 1 (LIS1), mediates the structure and function of the Golgi complex. Both α1 and α2 partially localize on Golgi membranes, and purified catalytically active, but not inactive α1 and α2 induce Golgi membrane tubule formation in a reconstitution system. Overexpression of wild-type or mutant α1 or α2 revealed that both PLA(2) activity and LIS1 are important for maintaining Golgi structure. Knockdown of PAFAH Ib subunits fragments the Golgi complex, inhibits tubule-mediated reassembly of intact Golgi ribbons, and slows secretion of cargo. Our results demonstrate a cooperative interplay between the PLA(2) activity of α1 and α2 with LIS1 to facilitate the functional organization of the Golgi complex, thereby suggesting a model that links phospholipid remodeling and membrane tubulation to dynein-dependent transport

    A new wrap for neuronal activity?

    No full text
    As we learn and experience the world around us, our brains are remodeling neuronal pathways. Is this remodeling only a property of neurons, or are other brain cell types also adapting and contributing to learning? A substantial proportion of cells in the mammalian brain are oligodendrocytes and their precursors (collectively called oligodendroglia). Oligodendrocytes generate multiple myelin sheaths, lipid-rich extensions of specialized plasma membrane that spirally coat condensed layers around neurons. This insulation facilitates rapid nerve conduction, increasing velocities of neuron signals 10-fold (1) by restricting current flow to the small gaps between sheaths—the nodes of Ranvier. More than half of the human brain is composed of myelinated nerves (“white matter”). With such extensive myelinated neural networks, it raises the questions: Do the myelin-producing oligodendrocytes in the brain also adapt as neural circuits are modified in response to activity, and does adaptation of oligodendrocytes then affect the underlying neural circuits? On page 487 of this issue, Gibson et al. (2) provide new evidence to address how neuron activity may promote oligodendroglia changes

    Oriented and sustained protein expression on biomimicking electrospun fibers for evaluating functionality of cells

    No full text
    A proper protein orientation is often required in order to achieve specific protein-receptor interaction to elicit a desired biological response. Here, we present a Protein A-based biomimicking platform that is capable of efficiently orienting proteins for evaluating cellular behaviour. By absorbing Protein A onto aligned bio-mimicking polycaprolactone (PCL) fibers, we demonstrate that protein binding could be retained on these fibers for at least 7 days under physiologically relevant conditions. We further show that Protein A served as a molecular orientor to arrange the recombinant proteins in similar orientations. Such protein-orienting scaffolds were further verified to be biologically functional by using sensitive primary rat cortical neurons (CNs) and oligodendrocyte progenitor cells (OPCs), as model neural cells for a stringent proof of concept. Specifically, CNs that were seeded on fibers coated with Protein A and a known enhancer of neurite growth (L1 Cell Adhesion Molecular L1CAM) displayed the longest total neurite length (462.77 ± 100.79 Όm, p < 0.001) as compared to the controls. Besides that, OPCs seeded on fibers coated with Protein A and Neuregulin-1 Type III (Nrg1 type III) (myelin enhancer) produced the longest myelin ensheathment length (19.8 ± 11.69 Όm). These results demonstrate the efficacy of this platform for protein screening applications
    corecore