170 research outputs found

    Mid-crustal deformation of the Annapurna-Dhaulagiri Himalaya, central Nepal: An atypical example of channel flow during the Himalayan orogeny

    Get PDF
    The channel-flow model for the Greater Himalayan Sequence (GHS) of the Himalayan orogen involves a partially molten, rheologically weak, mid-crustal layer “flowing” southward relative to the upper and lower crust during late Oligocene–Miocene. Flow was driven by topographic overburden, underthrusting, and focused erosion. We present new structural and thermobarometric analyses from the GHS in the Annapurna-Dhaulagiri Hima­laya, central Nepal; these data suggest that during exhumation, the GHS cooled, strengthened, and transformed from a weak “active channel” to a strong “channel plug” at greater depths than elsewhere in the Himalaya. After strengthening, continued convergence resulted in localized top-southwest (top-SW) shortening on the South Tibetan detachment system (STDS). The GHS in the Annapurna-Dhaulagiri Himalaya displays several geological features that distinguish it from other Himalayan regions. These include reduced volumes of leucogranite and migmatite, no evidence for partial melting within the sillimanite stability field, reduced structural thickness, and late-stage top-southwest shortening in the STDS. New and previously published structural and thermobarometric constraints suggest that the channel-flow model can be applied to mid-Eocene–early Miocene mid-crustal evolution of the GHS in the Annapurna-Dhaulagiri Himalaya. However, pressure-temperature-time (PTt) constraints indicate that following peak conditions, the GHS in this region did not undergo rapid isothermal exhumation and widespread sillima­nite-grade decompression melting, as commonly recorded elsewhere in the Hima­laya. Instead, lower-than-typical structural thickness and melt volumes suggest that the upper part of the GHS (Upper Greater Himalayan Sequence [UGHS]—the proposed channel) had a greater viscosity than in other Hima­layan regions. We suggest that viscosity-limited, subdued channel flow prevented exhumation on an isothermal trajectory and forced the UGHS to exhume slowly. These findings are distinct from other regions in the Himalaya. As such, we describe the mid-crustal evolution of the GHS in the Annapurna-­Dhaulagiri Himalaya as an atypical example of channel flow during the Himalayan orogeny

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Overview of the JET results in support to ITER

    Get PDF

    Recent advances in medecine. Clinical laboratory therapeutic. Eleventh edition.

    No full text
    LEIDSSTELSELOPLADEN-RUG0

    Plummer-Vinson Syndrome with a Post-Cricoid Web

    No full text

    Rheumatoid Arthritis with Subcutaneous Nodules

    No full text

    The position of the acid pocket as a major risk factor for acidic reflux in healthy subjects and patients with GORD

    Get PDF
    Gastro-oesophageal reflux occurs twice as much during transient lower oesophageal sphincter relaxations (TLOSRs) in patients with gastro-oesophageal reflux disease (GORD) compared to healthy volunteers (HVs). Our aim was to assess whether the localisation of the postprandial acid pocket and its interaction with a hiatal hernia (HH) play a role in the occurrence of acidic reflux during TLOSRs. Ten HVs and 22 patients with GORD (12 with HH or =3 cm (l-HH)) were studied. The squamocolumnar junction and diaphragmatic impression were marked with a radioactively labelled clip. To visualise the acid pocket, (99m)Tc-pertechnetate was injected intravenously and images were acquired up to 2 h postprandial. Concurrently, combined manometry/impedance and four-channel pH-metry were performed, with pH pull-through at multiple time-points. The rate of TLOSRs and the per cent associated with reflux was comparable between all groups. However, acidic reflux was significantly increased in patients, especially in patients with l-HH. Acid pocket length was significantly enlarged in patients. Moreover, immediately before a TLOSR, the acid pocket was more frequently located within the hiatus or above the diaphragm in patients with GORD (s-HH, 54%; l-HH, 77%) compared to HVs (22% of TLOSRs). Acidic reflux was significantly increased when the acid pocket was located above the diaphragm in all groups compared to a sub-diaphragmatic localisation. The position of the acid pocket is largely determined by the presence of a HH. Entrapment of the pocket above the diaphragm, especially in patients with l-HH, is a major risk factor underlying the increased occurrence of acidic reflux during a TLOSR in patients with GOR
    corecore