36 research outputs found
Respirable crystalline silica and lung cancer in community-based studies: impact of job-exposure matrix specifications on exposure–response relationships
Objectives: The quantitative job-exposure matrix SYN-JEM consists of various dimensions: job-specific estimates, region-specific estimates, and prior expert ratings of jobs by the semi-quantitative DOM-JEM. We analyzed the effect of different JEM dimensions on the exposure-response relationships between occupational silica exposure and lung cancer risk to investigate how these variations influence estimates of exposure by a quantitative JEM and associated health endpoints. Methods: Using SYN-JEM, and alternative SYN-JEM specifications with varying dimensions included, cumulative silica exposure estimates were assigned to 16 901 lung cancer cases and 20 965 controls pooled from 14 international community-based case-control studies. Exposure-response relationships based on SYN-JEM and alternative SYN-JEM specifications were analyzed using regression analyses (by quartiles and log-transformed continuous silica exposure) and generalized additive models (GAM), adjusted for age, sex, study, cigarette pack-years, time since quitting smoking, and ever employment in occupations with established lung cancer risk. Results: SYN-JEM and alternative specifications generated overall elevated and similar lung cancer odds ratios ranging from 1.13 (1st quartile) to 1.50 (4th quartile). In the categorical and log-linear analyses SYN-JEM with all dimensions included yielded the best model fit, and exclusion of job-specific estimates from SYN-JEM yielded the poorest model fit. Additionally, GAM showed the poorest model fit when excluding job-specific estimates. Conclusion: The established exposure-response relationship between occupational silica exposure and lung cancer was marginally influenced by varying the dimensions of SYN-JEM. Optimized modelling of exposure-response relationships will be obtained when incorporating all relevant dimensions, namely prior rating, job, time, and region. Quantitative job-specific estimates appeared to be the most prominent dimension for this general population JEM
Respirable crystalline silica and lung cancer in community-based studies: impact of job-exposure matrix specifications on exposure-response relationships
OBJECTIVES: The quantitative job-exposure matrix SYN-JEM consists of various dimensions: job-specific estimates, region-specific estimates, and prior expert ratings of jobs by the semi-quantitative DOM-JEM. We analyzed the effect of different JEM dimensions on the exposure-response relationships between occupational silica exposure and lung cancer risk to investigate how these variations influence estimates of exposure by a quantitative JEM and associated health endpoints. METHODS: Using SYN-JEM, and alternative SYN-JEM specifications with varying dimensions included, cumulative silica exposure estimates were assigned to 16 901 lung cancer cases and 20 965 controls pooled from 14 international community-based case-control studies. Exposure-response relationships based on SYN-JEM and alternative SYN-JEM specifications were analyzed using regression analyses (by quartiles and log-transformed continuous silica exposure) and generalized additive models (GAM), adjusted for age, sex, study, cigarette pack-years, time since quitting smoking, and ever employment in occupations with established lung cancer risk. RESULTS: SYN-JEM and alternative specifications generated overall elevated and similar lung cancer odds ratios ranging from 1.13 (1st quartile) to 1.50 (4th quartile). In the categorical and log-linear analyses SYN-JEM with all dimensions included yielded the best model fit, and exclusion of job-specific estimates from SYN-JEM yielded the poorest model fit. Additionally, GAM showed the poorest model fit when excluding job-specific estimates. CONCLUSION: The established exposure-response relationship between occupational silica exposure and lung cancer was marginally influenced by varying the dimensions of SYN-JEM. Optimized modelling of exposure-response relationships will be obtained when incorporating all relevant dimensions, namely prior rating, job, time, and region. Quantitative job-specific estimates appeared to be the most prominent dimension for this general population JEM
Genetic Analysis of Lung Cancer and the Germline Impact on Somatic Mutation Burden
International audienceBackground Germline genetic variation contributes to lung cancer (LC) susceptibility. Previous genome-wide association studies (GWAS) have implicated susceptibility loci involved in smoking behaviors and DNA repair genes, but further work is required to identify susceptibility variants. Methods To identify LC susceptibility loci, a family history-based genome-wide association by proxy (GWAx) of LC (48 843 European proxy LC patients, 195 387 controls) was combined with a previous LC GWAS (29 266 patients, 56 450 controls) by meta-analysis. Colocalization was used to explore candidate genes and overlap with existing traits at discovered susceptibility loci. Polygenic risk scores (PRS) were tested within an independent validation cohort (1 666 LC patients vs 6 664 controls) using variants selected from the LC susceptibility loci and a novel selection approach using published GWAS summary statistics. Finally, the effects of the LC PRS on somatic mutational burden were explored in patients whose tumor resections have been profiled by exome (n = 685) and genome sequencing (n = 61). Statistical tests were 2-sided. Results The GWAx–GWAS meta-analysis identified 8 novel LC loci. Colocalization implicated DNA repair genes (CHEK1), metabolic genes (CYP1A1), and smoking propensity genes (CHRNA4 and CHRNB2). PRS analysis demonstrated that these variants, as well as subgenome-wide significant variants related to expression quantitative trait loci and/or smoking propensity, assisted in LC genetic risk prediction (odds ratio = 1.37, 95% confidence interval = 1.29 to 1.45; P < .001). Patients with higher genetic PRS loads of smoking-related variants tended to have higher mutation burdens in their lung tumors. Conclusions This study has expanded the number of LC susceptibility loci and provided insights into the molecular mechanisms by which these susceptibility variants contribute to LC development
Respirable crystalline silica and lung cancer in community-based studies: impact of job-exposure matrix specifications on exposure–response relationships
Objectives The quantitative job-exposure matrix SYN-JEM consists of various dimensions: job-specific estimates, region-specific estimates, and prior expert ratings of jobs by the semi-quantitative DOM-JEM. We analyzed the effect of different JEM dimensions on the exposure–response relationships between occupational silica exposure and lung cancer risk to investigate how these variations influence estimates of exposure by a quantitative JEM and associated health endpoints. Methods Using SYN-JEM, and alternative SYN-JEM specifications with varying dimensions included, cumulative silica exposure estimates were assigned to 16 901 lung cancer cases and 20 965 controls pooled from 14 international community-based case-control studies. Exposure–response relationships based on SYN-JEM and alternative SYN-JEM specifications were analyzed using regression analyses (by quartiles and log-transformed continuous silica exposure) and generalized additive models (GAM), adjusted for age, sex, study, cigarette pack-years, time since quitting smoking, and ever employment in occupations with established lung cancer risk. Results SYN-JEM and alternative specifications generated overall elevated and similar lung cancer odds ratios ranging from 1.13 (1st quartile) to 1.50 (4th quartile). In the categorical and log-linear analyses SYN-JEM with all dimensions included yielded the best model fit, and exclusion of job-specific estimates from SYN-JEM yielded the poorest model fit. Additionally, GAM showed the poorest model fit when excluding job-specific estimates. Conclusion The established exposure–response relationship between occupational silica exposure and lung cancer was marginally influenced by varying the dimensions of SYN-JEM. Optimized modelling of expo-sure–response relationships will be obtained when incorporating all relevant dimensions, namely prior rating, job, time, and region. Quantitative job-specific estimates appeared to be the most prominent dimension for this general population JEM
Obesity, Metabolic Factors and Risk of Different Histological Types of Lung Cancer: A Mendelian Randomization Study
Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01–1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15–2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79–1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84–0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25–2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior
Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study.
BACKGROUND: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer.
METHODS AND FINDINGS: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79-1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results.
CONCLUSIONS: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior
GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores
Objective: More than 90% of people who attempt suicide have a psychiatric diagnosis;however, twin and family studies suggest that the genetic etiology of suicide attempt is partially distinct from that of the psychiatric disorders themselves. The authors present the largest genome-wide association study (GWAS) on suicide attempt, using cohorts of individuals with major depressive disorder, bipolar disorder, and schizophrenia from the Psychiatric Genomics Consortium. Methods: The samples comprised 1,622 suicide attempters and 8,786 nonattempters with major depressive disorder;3,264 attempters and 5,500 nonattempters with bipolar disorder;and 1,683 attempters and 2,946 nonattempters with schizophrenia. A GWAS on suicide attempt was performed by comparing attempters to nonattempters with each disorder, followed by a meta-analysis across disorders. Polygenic risk scoring was used to investigate the genetic relationship between suicide attempt and the psychiatric disorders. Results: Three genome-wide significant loci for suicide attempt were found: one associated with suicide attempt in major depressive disorder, one associated with suicide attempt in bipolar disorder, and one in the meta-analysis of suicide attempt in mood disorders. These associations were not replicated in independent mood disorder cohorts from the UK Biobank and iPSYCH. No significant associations were found in the meta-analysis of all three disorders. Polygenic risk scores for major depression were significantly associated with suicide attempt in major depressive disorder (R-2=0.25%), bipolar disorder (R-2=0.24%), and schizophrenia (R-2=0.40%). Conclusions: This study provides new information on genetic associations and demonstrates that genetic liability for major depression increases risk for suicide attempt across psychiatric disorders. Further collaborative efforts to increase sample size may help to robustly identify genetic associations and provide biological insights into the etiology of suicide attempt