50 research outputs found
Experimental Models for Aging and their Potential for Novel Drug Discovery
An interesting area of scientific research is the development of potential antiaging drugs. In order to pursue this goal, it is necessary to gather the specific knowledge about the adequate preclinical models that are available to evaluate the beneficial effects of new potential drugs. This review is focused on invertebrate and vertebrate preclinical models used to evaluate the efficacy of antiaging compounds, with the objective to extend life span and health span. Research and online content related to aging, antiaging drugs, experimental aging models is reviewed. Moreover, in this review, the main experimental preclinical models of organisms that have contributed to the research in the pharmacol-ogy of lifespan extension and the understanding of the aging process are discussed. Dietary restriction (DR) constitutes a common experimental process to extend life span in all organisms. Besides, classical antiaging drugs such as resveratrol, rapamycin and metformin denominated as DR mimetics are also discussed. Likewise, the main therapeutic targets of these drugs include sirtuins, IGF-1, and mTOR, all of them being modulated by DR. Advances in molecular biology have uncovered the potential molecular pathways involved in the aging process. Due to their characteristics, invertebrate models are mainly used for drug screening. The National Institute on Aging (NIA) developed the Interventions Testing Program (ITP). At the pre-clinical level, the ITP uses Heterogeneous mouse model (HET) which is probably the most suitable rodent model to study potential drugs against aging prevention. The accelerated-senescence mouse P8 is also a mammalian rodent model for aging research. However, when evaluating the effect of drugs on a preclinical level, the evaluation must be done in non-human primates since it is the mammalian specie closest to humans. Research is needed to investigate the impact of new potential drugs for the increase of human quality o
Neuroprotective Effects of β-Caryophyllene against Dopaminergic Neuron Injury in a Murine Model of Parkinson's Disease Induced by MPTP
Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by the loss of dopaminergic neurons in the substantia nigra (SN). Although the causes of PD are not understood, evidence suggests that its pathogenesis is associated with oxidative stress and inflammation. Recent studies have suggested a protective role of the cannabinoid signalling system in PD. β-caryophyllene (BCP) is a natural bicyclic sesquiterpene that is an agonist of the cannabinoid type 2 receptor (CB2R). Previous studies have suggested that BCP exerts prophylactic and/or curative effects against inflammatory bowel disease through its antioxidative and/or anti-inflammatory action. The present study describes the neuroprotective effects of BCP in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine model of PD, and we report the results of our investigation of its neuroprotective mechanism in neurons and glial cells. In the murine model, BCP pretreatment ameliorated motor dysfunction, protected against dopaminergic neuronal losses in the SN and striatum, and alleviated MPTP-induced glia activation. Additionally, BCP inhibited the levels of inflammatory cytokines in the nigrostriatal system. The observed neuroprotection and inhibited glia activation were reversed upon treatment with the CB2R selective antagonist AM630, confirming the involvement of the CB2R. These results indicate that BCP acts via multiple neuroprotective mechanisms in our murine model and suggest that BCP may be viewed as a potential treatment and/or preventative agent for PD
Prolonged maternal separation induces undernutrition and systemic inflammation with disrupted hippocampal development in mice
Objective:
Prolonged maternal separation (PMS) in the first 2 wk of life has been associated with poor growth with lasting effects in brain structure and function. This study aimed to investigate whether PMS-induced undernutrition could cause systemic inflammation and changes in nutrition-related hormonal levels, affecting hippocampal structure and neurotransmission in C57BL/6J suckling mice.
Methods:
This study assessed mouse growth parameters coupled with insulin-like growth factor-1 (IGF-1) serum levels. In addition, leptin, adiponectin, and corticosterone serum levels were measured following PMS. Hippocampal stereology and the amino acid levels were also assessed. Furthermore, we measured myelin basic protein and synapthophysin (SYN) expression in the overall brain tissue and hippocampal SYN immunolabeling. For behavioral tests, we analyzed the ontogeny of selected neonatal reflexes. PMS was induced by separating half the pups in each litter from their lactating dams for defined periods each day (4 h on day 1, 8 h on day 2, and 12 h thereafter). A total of 67 suckling pups were used in this study.
Results:
PMS induced significant slowdown in weight gain and growth impairment. Significant reductions in serum leptin and IGF-1 levels were found following PMS. Total CA3 area and volume were reduced, specifically affecting the pyramidal layer in PMS mice. CA1 pyramidal layer area was also reduced. Overall hippocampal SYN immunolabeling was lower, especially in CA3 field and dentate gyrus. Furthermore, PMS reduced hippocampal aspartate, glutamate, and gammaaminobutyric acid levels, as compared with unseparated controls.
Conclusion:
These findings suggest that PMS causes significant growth deficits and alterations in hippocampal morphology and neurotransmission.This work was supported in part by National Institutes of Health (NIH) research grant 5R01HD053131, funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the NIH Office of Dietary Supplements, and Brazilian grants from CNPq and CAPES (Grant # RO1 HD053131). The authors would like to thank Dr. Patricia Foley for veterinarian technical support and Dr. Jose Paulo Andrade for the excellent comments and suggestions to improve this manuscript. N.S. contributed with the stereological studies. I.L.F. and R.B.O. contributed with the behavioral studies. I.L.F., R.B.O., and R.L.G. contributed with the study design, study analysis, and manuscript preparation. G.A.M. and P.B.F. contributed with neurochemical brain analyses. J.I.A.L. and G.M.A. contributed with hormonal and CRP serum analyses. D.G.C., K.M.C., and R.S.R. contributed with animal experimentation and data collection
Ensheathing cell-conditioned medium directs the differentiation of human umbilical cord blood cells into aldynoglial phenotype cells
Despite their similarities to bone marrow precursor
cells (PC), human umbilical cord blood (HUCB)
PCs are more immature and, thus, they exhibit greater
plasticity. This plasticity is evident by their ability to
proliferate and spontaneously differentiate into almost any
cell type, depending on their environment. Moreover,
HUCB-PCs yield an accessible cell population that can be
grown in culture and differentiated into glial, neuronal and
other cell phenotypes. HUCB-PCs offer many potential
therapeutic benefits, particularly in the area of neural
replacement. We sought to induce the differentiation of
HUCB-PCs into glial cells, known as aldynoglia. These
cells can promote neuronal regeneration after lesion and
they can be transplanted into areas affected by several
pathologies, which represents an important therapeutic
strategy to treat central nervous system damage. To induce
differentiation to the aldynoglia phenotype, HUCB-PCs
were exposed to different culture media. Mononuclear cells
from HUCB were isolated and purified by identification of
CD34 and CD133 antigens, and after 12 days in culture,
differentiation of CD34? HUCB-PCs to an aldynoglia
phenotypic, but not that of CD133? cells, was induced in
ensheathing cell (EC)-conditioned medium. Thus, we
demonstrate that the differentiation of HUCB-PCs into
aldynoglia cells in EC-conditioned medium can provide a
new source of aldynoglial cells for use in transplants to
treat injuries or neurodegenerative diseases
Resveratrol: An Antiaging Drug with Potential Therapeutic Applications in Treating Diseases
pharmaceutical
Estructura y función de las subunidades del receptor a glutamato tipo NMDA
Resumen: Introducción: Realizar una revisión de la fisiología de las subunidades del receptor a glutamato tipo N-metil-D-aspartato (NMDA). Desarrollo: El acido glutámico (Glu) es el principal neurotransmisor excitador del sistema nervioso central la cual interactúa con dos tipos de receptores clasificados como: metabotrópicos y ionotrópicos. Los receptores ionotrópicos se dividen de acuerdo a la afinidad de sus agonistas específicos en: N-metil-D-aspartato (NMDA), ácido α-amino-3-hidroxi-5-metil-4-isoxazol (AMPA) y acido kaínico (KA). Los receptores NMDA son estructuras macromoleculares que se forman por combinaciones de diferentes subunidades: NMDAR1 (NR1), NMDAR2 (NR2) y (NR3) Conclusiones: El estudio de este receptor ha sido de gran interés por la función que desempeña en la plasticidad sináptica, pero sobre todo por la permeabilidad que tiene para el ion Ca++. En esta revisión se analiza la composición molecular del receptor NMDA, así como las distintas variantes de edición de la subunidad NR1 que en asociación con la subunidad NR2 forman el principal dímero de este receptor. La composición, estructura y funcionalidad y sus distintos patrones de expresión tanto temporal y espacial, ha permitido conocer la versatilidad y la diversidad funcional tanto de las diferentes isoformas de la subunidad NR1, así como las distintas propiedades farmacológicas de la subunidad NR2. Abstract: Introducion: To review the physiology of the glutamate receptor subunits such as N-methyl-D-aspartate (NMDA). Development: Glutamic acid (Glu) is the major excitatory neurotransmitter in the central nervous system which interacts with two types classified into two types: metabotropic and ionotropic. Ionotropic receptors are classified according to the affinity of their specific agonists: N-methyl-D-aspartate (NMDA), α-amino acid-3-hydroxy-5-methyl-4-isoxazole (AMPA) and kainic acid (KA). NMDA receptors are macromolecular structures that are formed by different combinations of subunits, NMDAR1 (NR1), NMDAR2 (NR2) and NMDAR3 (NR3) Conclusions: The study of this receptor has been of great interest due to its role in synaptic plasticity, but mainly due to the permeability it has to Ca++ ion. This review examines the molecular composition of NMDA receptor and the variants of NR1 subunit edition in association with NR2 subunit dimer, the main form of this receptor. The composition, structure and function and their distinct expression patterns in both time and space, has shown the versatility and diversity of functionally different isoforms of the NR1 subunit and various pharmacological properties of the NR2 subunit. Palabras clave: Excitotoxicidad, Isoformas, Receptor NMDA, Subunidad NR1, Subunidad NR2, Keywords: Excitotoxicity, Isoforms, NMDA receptor, Subunit NR1, Subunit NR