163 research outputs found

    Occupational therapy students’ experiences of professional reasoning during practice-based learning: A dialogical analysis

    Get PDF
    Background Practice-based learning equates to a third of occupational therapy students’ education and provides an opportunity for development of professional reasoning. Although professional reasoning is a key competency underpinning entry to the occupational therapy profession, little is known about students’ reasoning during their practice-based learning. Methodology A dialogical approach, based on the philosophy of Mikhail Bakhtin, has been used to explore occupational therapy students’ experiences of reasoning during their practice-based learning. A dialogical approach recognises living as both an individual and a social phenomenon. Bakhtin suggests speech is composed of different genres which have distinctive temporal and spatial features, these can indicate how we position ourselves in relation to others. Twelve occupational therapy students were interviewed after they had completed their final practice placement. Findings Fifty-seven key moments were analysed, and two major genres (Bildungsroman and romance) and three minor genres (travel, adventure, and carnival) were identified. The Bildungsroman illustrated experiences of professional socialisation into reasoning. The other genres related to expression of professional identity. The romantic genre was used to convey the person-centred and occupation-centred values that informed the students’ reasoning. The travel genre indicated an inability to reason, for example in a fast-paced setting. The adventure genre was used when the practice educator was experienced as testing reasoning, and the carnival genre when reasoning in an unpredictable situation. Discussion This study demonstrates the value of a dialogical methodology in exploring a complex, individual, and social phenomenon. Reasoning was experienced both as a means of enacting, affirming, and negotiating a professional identity, and of being socialised into the reasoning of an occupational therapist. Some students resisted socialisation into reasoning that was incongruent with their values and developing professional identity. The findings also illustrated the emotionality of learning to reason, and the need for emotional intelligence. Recommendations It is recommended that students and educators are prepared for the emotionality of learning to reason. Preceptorship programmes need to support newly qualified occupational therapists in the development of their professional identit

    Positron emission tomography detects evidence of viability in rest technetium-99m sestamibi defects

    Get PDF
    AbstractObjectives. The purpose of this study was to determine the relative value of single-photon emission computed tomographic (SPECT) imaging at rest using technetium-99m methoxyisobutyl isonitrile (technetium-99m sestamibi) with positron emission tomography for detection of viable myocardium.Background. Recent studies comparing positron emission tomography and thallium-201 reinjection with rest technetium-99m sestamibi imaging have suggested that the latter technique underestimates myocardial viability.Methods. Twenty patients with a previous myocardial infarction underwent rest technetium-99m sestamibi imaging and positron emission tomography using fluorine (F)-18 deoxyglucose and nitrogen (N)-13 ammonia. In each patient, circumferential profile analysis was used to determine technetium-99m sestamibi, F-18 deoxyglucose and N-13 ammonia activity (expressed as percent of peak activity) in nine cardiac segments and in the perfusion defect defined by the area having technetium-99m sestamibi activity <60%. Technetium-99m sestamibi defects were graded as moderate (50% to 59% of peak activity) and severe (<50% of peak activity). Estimates of perfusion defect size were compared between technetium-99m sestamibi and N-13 ammonia.Results. Sixteen (53%) of 30 segments with moderate defects and 16 (47%) of 34 segments with severe defects had ≥60% F-18 deoxyglocose activity considered indicative of viability. Fluorine-18 deoxyglucose evidence of viability was still present in 50% of segments with technetium-99m sestamibi activity <40%. There was no significant difference in the mean (± SD) technetium-99m sestamibi activity in segments with viable (40 ± 7%) and nonviable segments (49 ± 7%, p = 0.84). Of the 18 patients who had adequate F-18 deoxyglucose studies, the area of the technetium-99m sestamibi defect was viable in 5 (28%). In 16 patients (80%), perfusion defect size determined by technetium-99m sestamibi exceeded that measured by N-13 ammonia. The difference in defect size between technetium-99m sestamibi and N-13 ammonia was significantly greater in patients with viable (21 ± 9%) versus nonviable segments (7 ± 9%, p = 0.007).Conclusions. Moderate and severe rest technetium-99m sestamibi defects frequently have metabolic evidence of viability. Technetium-99m sestamibi SPECT yields larger perfusion defects than does N-13 ammonia positron emission tomography when the same threshold values are used

    The Current Role of Viability Imaging to Guide Revascularization and Therapy Decisions in Patients With Heart Failure and Reduced Left Ventricular Function

    Get PDF
    This review describes the current evidence and controversies for viability imaging to direct revascularization decisions and the impact on patient outcomes. Balancing procedural risks and possible benefit from revascularization is a key question in patients with heart failure of ischemic origin (IHF). Different stages of ischemia induce adaptive changes in myocardial metabolism and function. Viable but dysfunctional myocardium has the potential to recover after restoring blood flow. Modern imaging techniques demonstrate different aspects of viable myocardium; perfusion (single-photon emission computed tomography [SPECT], positron emission tomography [PET], cardiovascular magnetic resonance [CMR]), cell metabolism (PET), cell membrane integrity and mitochondrial function (201Tl and 99mTc-based SPECT), contractile reserve (stress echocardiography, CMR) and scar (CMR). Observational studies suggest that patients with IHF and significant viable myocardium may benefit from revascularization compared with medical treatment alone but that in patients without significant viability, revascularization appears to offer no survival benefit or could even worsen the outcome. This was not supported by 2 randomized trials (Surgical Treatment for Ischemic Heart Failure [STICH] and PET and Recovery Following Revascularization [PARR] -2) although post-hoc analyses suggest that benefit can be achieved if decisions had been strictly based on viability imaging recommendations. Based on current evidence, viability testing should not be the routine for all patients with IHF considered for revascularization but rather integrated with clinical data to guide decisions on revascularization of high-risk patients with comorbidities.Peer reviewe

    Imaging atherosclerosis with hybrid [(18)F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: What Leonardo da Vinci could not see

    Get PDF
    Prodigious efforts and landmark discoveries have led toward significant advances in our understanding of atherosclerosis. Despite significant efforts, atherosclerosis continues globally to be a leading cause of mortality and reduced quality of life. With surges in the prevalence of obesity and diabetes, atherosclerosis is expected to have an even more pronounced impact upon the global burden of disease. It is imperative to develop strategies for the early detection of disease. Positron emission tomography (PET) imaging utilizing [18F]fluorodeoxyglucose (FDG) may provide a non-invasive means of characterizing inflammatory activity within atherosclerotic plaque, thus serving as a surrogate biomarker for detecting vulnerable plaque. The aim of this review is to explore the rationale for performing FDG imaging, provide an overview into the mechanism of action, and summarize findings from the early application of FDG PET imaging in the clinical setting to evaluate vascular disease. Alternative imaging biomarkers and approaches are briefly discussed. © 2012 The Author(s)

    Characterization of 3D PET systems for accurate quantification of myocardial blood flow

    Get PDF
    Three-dimensional (3D) mode imaging is the current standard for positron emission tomography-computed tomography (PET-CT) systems. Dynamic imaging for quantification of myocardial blood flow (MBF) with short-lived tracers, such as Rb-82- chloride (Rb-82), requires accuracy to be maintained over a wide range of isotope activities and scanner count-rates. We propose new performance standard measurements to characterize the dynamic range of PET systems for accurate quantitative imaging. Methods: 1100-3000 MBq of Rb-82 or N-13-ammonia was injected into the heart wall insert of an anthropomorphic torso phantom. A decaying isotope scan was performed over 5 half-lives on 9 different 3D PET-CT systems and 1 3D/twodimensional (2D) PET-only system. Dynamic images (28x15s) were reconstructed using iterative algorithms with all corrections enabled. Dynamic range was defined as the maximum activity in the myocardial wall with <10% bias, from which corresponding dead-time, count-rates and/or injected activity limits were established for each scanner. Scatter correction residual bias was estimated as the maximum cavity blood-tomyocardium activity ratio. Image quality was assessed via the coefficient of variation measuring non-uniformity of the left ventricle (LV) myocardium activity distribution. Results: Maximum recommended injected activity/body-weight, peak dead-time correction factor, count-rates and residual scatter bias for accurate cardiac MBF imaging were: 3-14 MBq/kg, 1.5-4.0, 22-64 Mcps singles and 4-14 Mcps prompt coincidence count-rates, and 2-10% on the investigated scanners. Non-uniformity of the myocardial activity distribution varied from 3-16%. Conclusion: Accurate dynamic imaging is possible on the 10 3D-PET systems if the maximum injected MBq/kg values are respected to limit peak dead-time losses during the bolus first-pass transit

    The SCUBA-2 Cosmology Legacy Survey:850um maps, catalogues and number counts

    Get PDF
    We present a catalogue of nearly 3,000 submillimetre sources detected at 850um over ~5 square degrees surveyed as part of the James Clerk Maxwell Telescope (JCMT) SCUBA-2 Cosmology Legacy Survey (S2CLS). This is the largest survey of its kind at 850um, probing a meaningful cosmic volume at the peak of star formation activity and increasing the sample size of submillimetre galaxies selected at 850um by an order of magnitude. We describe the wide 850um survey component of S2CLS, which covers the key extragalactic survey fields: UKIDSS-UDS, COSMOS, Akari-NEP, Extended Groth Strip, Lockman Hole North, SSA22 and GOODS-North. The average 1-sigma depth of S2CLS is 1.2 mJy/beam, approaching the SCUBA-2 850um confusion limit, which we determine to be ~0.8 mJy/beam. We measure the single dish 850um number counts to unprecedented accuracy, reducing the Poisson errors on the differential counts to approximately 4% at S_850~3mJy. With several independent fields, we investigate field-to-field variance, finding that the number counts on 0.5-1 degree scales are generally within 50% of the S2CLS mean for S_850&gt;3mJy, with scatter consistent with the Poisson and estimated cosmic variance uncertainties, although there is a marginal (2-sigma) density enhancement in the GOODS-North field. The observed number counts are in reasonable agreement with recent phenomenological and semi-analytic models. Finally, the large solid angle of S2CLS allows us to measure the bright-end counts: at S_850&gt;10mJy there are approximately ten sources per square degree, and we detect the distinctive up-turn in the number counts indicative of the detection of local sources of 850um emission and strongly lensed high-redshift galaxies. Here we describe the data collection and reduction procedures and present calibrated maps and a catalogue of sources; these are made publicly available

    Predictors of 1-year compliance with adaptive servoventilation in patients with heart failure and sleep disordered breathing: preliminary data from the ADVENT-HF trial

    Get PDF
    Despite its effectiveness in suppressing sleep disordered breathing (SDB), positive airway pressure therapy (PAP) is not always well tolerated by patients and long-term adherence can be problematic. Recently, two multicentre, randomised clinical trials (RCTs) tested the effects of PAP for patients with cardiovascular disease and co-existing SDB on morbidity and mortality with negative outcomes [1, 2]. Relatively poor adherence to PAP therapy (mean 3.7 and 3.3 h·day-1, respectively) in these two trials might have contributed to their poor results. Indeed, higher PAP use per day is associated with better clinical outcomes than lower use [3]
    corecore