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REVIEW ARTICLE

Imaging atherosclerosis with hybrid
[18F]fluorodeoxyglucose positron emission
tomography/computed tomography imaging:
What Leonardo da Vinci could not see

Myra S. Cocker, PhD,a Brian Mc Ardle, MB BCh,a J. David Spence, MD,b

Cheemun Lum, MD,c Robert R. Hammond, MD,d Deidre C. Ongaro, B.Sc,a

Matthew A. McDonald, B.Sc,a Robert A. deKemp, PhD,a Jean-Claude Tardif,

MD,e and Rob S. B. Beanlands, MDa

Prodigious efforts and landmark discoveries have led toward significant advances in our under-
standing of atherosclerosis. Despite significant efforts, atherosclerosis continues globally to be a
leading cause of mortality and reduced quality of life. With surges in the prevalence of obesity and
diabetes, atherosclerosis is expected to have an even more pronounced impact upon the global
burden of disease. It is imperative to develop strategies for the early detection of disease. Positron
emission tomography (PET) imaging utilizing [18F]fluorodeoxyglucose (FDG) may provide a non-
invasive means of characterizing inflammatory activity within atherosclerotic plaque, thus serving
as a surrogate biomarker for detecting vulnerable plaque. The aim of this review is to explore the
rationale for performing FDG imaging, provide an overview into the mechanism of action, and
summarize findings from the early application of FDG PET imaging in the clinical setting to
evaluate vascular disease. Alternative imaging biomarkers and approaches are briefly discussed.

Key Words: Positron emission tomography Æ Computed tomography Æ
[18F] fluorodeoxyglucose Æ Inflammation Æ Calcification Æ Vulnerable plaque

Vessels in the elderly restrict the transit of blood

through thickening of the tunics.

Leonardo da Vinci, 1452–1519.

INTRODUCTION

Leonardo da Vinci presented perhaps one of the first

known descriptions of atherosclerosis. In his collection

of notes from post-mortem observations of human

anatomy and poorly understood pathology, da Vinci

merged what were the distinct disciplines of art and

science to describe and depict human development and

physiology.1 Five-hundred years later, significant

advances in technology enable non-invasive visualiza-

tion of atherosclerosis using multiple imaging

modalities, moving beyond anatomical characterization

toward directly imaging disease processes and patho-

physiology. The current challenge for imaging scientists

lies in identifying high-risk atherosclerotic lesions that

could lead to coronary or cerebrovascular sequelae prior

to adverse vascular events such as myocardial infarction

and stroke, and thereby enable personalized therapy

while mitigating risk.

Herein, we present a general introduction to

advanced non-invasive imaging of atherosclerosis with

particular emphasis upon [18F]fluorodeoxyglucose
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Montreal, Canada.

Reprint requests: Rob S. B. Beanlands, MD, Molecular Function and

Imaging Program, Division of Cardiology, Department of Medicine,

University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON

K1Y 4W7, Canada; rbeanlands@ottawaheart.ca.

J Nucl Cardiol 2012;19:1211–25.

1071-3581/$34.00

Copyright � 2012 The Author(s). This article is published with open

access at Springerlink.com

doi:10.1007/s12350-012-9631-9

1211



(FDG) positron emission tomography (PET). We will

discuss the role of FDG PET for the identification of the

high-risk ‘‘vulnerable plaque’’ across the arterial tree

and its potential for monitoring disease progression and

response to therapy.

Atherosclerosis

Atherosclerosis is the most common underlying

pathology responsible for adverse cardiovascular out-

comes including angina, myocardial infarction, transient

ischemic attacks, and stroke. With an aging population,

obesity and diabetes pandemics, cardiovascular disease

is projected to become a leading source of global disease

burden.2-5

Atherosclerosis is a chronic disease process that

begins with the disruption and inflammation of vascular

endothelium, leading to the formation of lipid-rich fatty

streaks that may arise as early as infancy. 6 Inflamma-

tory activity within these lesions increases as lipids and

macrophages progressively accumulate, resulting in

complex remodeling of fibrofatty plaques.7,8 A typical

plaque consists of a central lipid-rich core bound by a

fibrous cap. The fibrous cap can suddenly rupture or

erode away, exposing the core of the plaque to clotting

factors within blood. Activation of these factors results

in a cascade that can completely occlude the vessel and

induce severe ischemic injury or tissue necrosis.9,10

Plaque that is thrombosis-prone and likely to

progress rapidly, resulting in vessel occlusion is referred

to as vulnerable plaque.11 Proposed major criteria for

defining vulnerable plaque include the presence of

active inflammation, particularly increased activated

macrophage content.11 Evidence suggests that the

impending risk to a patient posed by the presence of

vulnerable plaque cannot be sufficiently determined by

assessing for the anatomic presence of plaque at a

specific site or vessel within the arterial tree. Rather,

global plaque burden across the entire arterial bed may

be a stronger correlate to determine patient risk, thus

allowing for risk stratification.12 In this regard, non-

invasive cardiovascular imaging may be useful as it

could visualize disease across the entire arterial bed, and

may also be utilized to monitor disease progression or

even regression with novel therapies.

Non-invasive Imaging of Atherosclerosis

Contrast-Enhanced Ultrasound Contrast-

enhanced ultrasound takes advantage of portability,

bedside imaging and wide availability of carotid ultra-

sound. Injection of intravascular micro-bubbles permits

the visualization of micro- and macro-vasculature, but

more importantly, intraplaque neovascularization.13

Neovascularization occurs during the early stages of

atherosclerosis where undeveloped leaky micro-vessels

are formed within the plaque.14 The risk associated with

these micro-vessels is the development of an intraplaque

hemorrhage that potentiates inflammation and contributes

toward plaque instability.14,15 Therefore, neovasculariza-

tion detected by contrast-enhanced ultrasound may serve

as a marker of a high-risk lesion or a vulnerable plaque.16

Furthermore, the intima-media is hypoechoic while the

adventitia is echogenic, resulting in contrast that can

delineate vessel lumen and plaque ulcerations or

irregularities on the plaque surface.17,18 Additionally,

intima-media thickness (IMT) can also be measured by

contrast-enhanced ultrasound and is a marker of pre-

mature atherosclerosis.

3-DIMENSIONAL ULTRASOUND

3D ultrasound imaging builds further upon the prin-

ciples of ultrasound imaging. With 3D ultrasound, it is

feasible to visualize carotid plaque and accurately quantify

plaque and vessel volume. Plaque volume assessed with

3D ultrasound is a more robust parameter than IMT and

thus a highly sensitive means to detect plaque progression,

as much as two orders of magnitude better than IMT.19-22

Plaque grows and extends longitudinally at a faster rate

than it thickens. Using 3D ultrasound it is possible to

utilize significantly reduced sample sizes to evaluate the

impact of an intervention upon plaque progression.21

Whether 3D ultrasound can define other high-risk plaque

parameters such as ulceration and other aspects of plaque

morphology is being evaluated in collaboration with the

Canadian Atherosclerosis Imaging Network (clinicaltri-

als.gov NCT01456403).23,24

COMPUTED TOMOGRAPHY (CT)

Computed tomography (CT) enables accurate iden-

tification of stenosis within arterial vessels with a high

degree of special resolution.25 In addition, CT offers the

unique ability to characterize calcification within pla-

que26 and stage lesions according to their developmental

phase to determine the risk of plaque rupture.27 A non-

calcified lipid-rich plaque reflects plaque in the early

stages of atherosclerosis.28 With remodeling, a non-

calcified lesion transitions into a mixed plaque that

contains calcium deposits and a lipid-rich core.28 Pro-

gressive accumulation of calcium deposits within plaque

leads to the formation of a dense mature calcified

plaque. Mixed and non-calcified plaques are at greatest

risk for plaque erosion or rupture.29 Indeed the presence

of spotty calcification in lesions evaluated with multi-

slice computed tomography has been associated with

acute coronary syndrome.30

1212 Cocker et al Journal of Nuclear Cardiology
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MAGNETIC RESONANCE IMAGING (MRI)

Magnetic resonance imaging (MRI) offers good

spatial resolution for the delineation of vascular lumen

and offers advantages in demonstrating plaque structure

and composition.31 MRI can accurately assess mean

wall thickness and vessel wall area.32 In addition, MRI

can lend insight into plaque composition including the

lipid-rich core, intraplaque hemorrhage and fibrous

cap.33-35 Compared to CT, MRI does not use ionizing

radiation. For these reasons, MRI has been utilized as an

endpoint in clinical trials to monitor disease progression

and the impact of therapy.36 Novel contrast agents that

may enable targeted MRI-based molecular imaging of

plaque progression are under currently evaluation.37-41

POSITRON EMISSION TOMOGRAPHY (PET)

PET imaging utilizes radiolabeled ligands and

tracers that may directly bind to specific targeted

molecules or accumulate within specific tissue beds,

thereby providing insight into active biologic metabolic

processes.42 This is an important advantage as it is

feasible to probe directly the in vivo expression of

molecular and metabolic activity within plaque. In

comparison to the anatomic imaging modalities that

mainly characterize plaque structure, composition and

morphology, PET can evaluate dynamic intraplaque

activity such as inflammation, active plaque calcifica-

tion, and other biologic processes (Figure 1).

HYBRID PET IMAGING

The spatial resolution of clinical PET imaging

ranges between 3 and 5 mm.43 With such resolution, it is

challenging to assess the uptake of radiotracer in small

structures such as the carotid and coronary vasculature.

To circumvent this limitation, hybrid imaging is per-

formed where PET images are co-registered with either

CT or more recently MRI44,45 (Figure 1). Thus, hybrid

Figure 1. Detection of inflamed plaque in a symptomatic patient a significantly stenotic left
internal carotid artery. In transverse and coronal contrast-enhanced CT images (top row), there is
evidence for significant obliteration of the lumen with little calcification on CT. Hybrid PET/CT
images provide evidence for increased [18F]fluorodeoxyglucose atthe site of the symptomatic
lesion (bottom row). 24 (Reproduced with permission of Informa UK, Ltd.).

Journal of Nuclear Cardiology Cocker et al 1213
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imaging may contribute toward greater sensitivity for

the anatomical detection of plaque, as well as potentially

increased specificity for active disease detection.

IMAGING WITH [18F]FDG PET

‘‘The prime cause of cancer is the replacement of

the respiration of oxygen in normal body cells by a

fermentation of sugar’’ (The Prime Cause and Preven-

tion of Cancer, Lecture by Otto Warburg, Annual

Meeting of Nobelists, Lindau, Germany, 1966). This

pivotal discovery by Nobel Laureate Dr. Otto Heinrich

Warburg in 1920s paved the way for future clinical

application of [18F]FDG imaging. By the early 1980s,

FDG was being used to distinguish between benign and

malignant lesions, define metabolic activity of cancer

cells and myocardium.46-48 Subsequently, one of the

initial applications for imaging vascular inflammation

was in the setting of Takayasu Arteritis.49 Rudd et al50

further expanded the use of FDG for evaluating athero-

sclerotic plaque within carotid vasculature and

subsequently demonstrated that this is a highly repro-

ducible technique (Figure 2).51

THE RATIONALE FOR [18F]FDG PET IMAGING OF
ATHEROSCLEROSIS

Active inflammation within plaque has been pro-

posed as a major criterion to identify high-risk

vulnerable plaque.12 Furthermore, the inflammatory

burden within ruptured plaque, as reflected by activated

macrophages, is significantly increased.52 Macrophages

potentiate localized inflammatory responses and are

pivotal mediators of atherosclerosis. Macrophages them-

selves have high metabolic rates and require an equally

abundant energy supply.53 In fact, in comparison to

smooth muscle cells, foam cells consume significantly

greater amounts of oxygen.54 This is partly due to

phagocytic activity consisting of oxidative or respiratory

bursts that yield superoxides and hydrogen peroxide to

degrade engulfed material.55

Radiolabelled FDG is a glucose analog that is taken

up by active cells to fuel in vivo metabolic processes.56

Therefore, FDG uptake may serve as a marker of

metabolic activity within a specific tissue. Importantly,

given that activated macrophages have high metabolic

rates, localized uptake of FDG within plaque may serve

as a surrogate marker of an inflamed high-risk lesion.

Indeed in patients with a history of transient ischemic

attacks arising from a specific carotid artery distribution,

as well as significantly stenosed internal carotid artery,

FDG was found to localize to macrophage-rich regions50

(Figure 3). The question that arises is whether the

observed FDG activity is actually reflective of FDG

taken up by macrophages, as opposed to surrounding

inflammatory cells.

Kubota et al57have demonstrated that FDG and

2-deoxy-D-[3H]glucose (3H-DG) uptake is greatest in

macrophage-rich regions assessed by macro- and micro-

autoradiography in an experimental tumor-induced

Figure 2. Reproducible carotid and aortic [18F]FDG uptake imaged with hybrid PET/CT over
2 weeks. A reflects carotid CT, PET, and hybrid PET/CT images demonstrating reproducible FDG
uptake in the right coronary artery (arrows). Similarly, B is indicative of reproducible FDG uptake
at the aortic arch and descending aorta of a patient (arrows) (Reprinted from Ref51with permission
from Elsevier).

1214 Cocker et al Journal of Nuclear Cardiology
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murine model. Moreover, cellular uptake studies also

demonstrate that FDG uptake is almost three-fold

greater in macrophages, as compared to tumor cells.58

These findings suggest that FDG uptake is a marker of

macrophage activity and further research reveals that

FDG may also be a marker of early foam cell

development.59

Finally, pioneering work by Rudd et al,50 Tawakol

et al,60 and others61-66 supports an association between

FDG uptake quantified in human carotid plaque speci-

mens with macrophage-specific CD68 immunohistology

staining (Figure 4).

INSIGHTS INTO ATHEROSCLEROTIC DISEASE
ACROSS VASCULAR BEDS DERIVED FROM

[18F]FDG PET

Carotid Vasculature

The relationship between carotid plaque composi-

tion and FDG uptake has been evaluated in several

studies.67 In terms of calcification, an inverse relation-

ship between calcium content within carotid plaque and

FDG uptake is noted.61 Lipid-rich necrotic plaque has

been shown to have greater FDG uptake than collage-

nous or calcified plaque.68 Additionally, FDG uptake has

also been related to high-risk morphological features of

carotid plaque such as positive remodeling, low atten-

uation profile (suggestive of a lipid-rich core), and

luminal irregularity (marker of plaque ulceration), as

characterized with hybrid PET/CT imaging,62 inferring

that FDG uptake may identify patients at higher risk of

vascular events. Indeed FDG uptake within carotid

vasculature has been related to cerebral micro-embo-

lism69 and risk of stroke.70

FDG uptake in carotid vasculature has been shown

to correlate with serum levels of C-reactive protein, a

marker of systemic inflammation.67,71 This supports the

concept of defining a ‘‘vulnerable patient’’ whereby the

presence of inflamed plaque within one node of the

arterial tree may increase the likelihood for the presence

of a vulnerable lesions within other vascular beds.71

Furthermore, other pre-existing co-morbidities may

contribute toward the burden of risk in certain patient

populations. Patients presenting with impaired glucose

tolerance and type-2 diabetes mellitus have increased

carotid FDG uptake that correlates with Framingham

Figure 3. Tritriated deoxyglucose autoradiography of an excised plaque from a symptomatic
patient establishes that silver grains accumulate between the lipid core and fibrous cap within
macrophages (inset) (magnification: 910 and 920) (Reprinted from Ref50 with permission from
Wolters Kluwer Health).

Figure 4. Mean within-patient [18F]fluorodeoxyglucose
uptake (expressed as a target-to-background ratio) is signifi-
cantly correlated with inflammation (r = 0.85; P \ .001).
Inflammation was defined as the percent of CD68 macrophage
staining with immunohistology (Reprinted from Ref60 with
permission from Elsevier).
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risk score.72 Likewise, patients presenting with meta-

bolic syndrome or with features suggestive of metabolic

syndrome also have increased carotid FDG uptake.73,74

There is also evidence that suggests that symptom-

atic carotid lesions tend to have greater FDG uptake

when compared to asymptomatic lesions, although the

extent of vascular stenosis is an important determinant.50

In general, while the degree of vascular stenosis eval-

uated with angiography is related to FDG uptake, 25%

of non-stenotic lesions detected in a vascular territory

compatible with patient presentation using high-resolu-

tion MRI angiography has significantly inflamed plaques

that can be imaged with FDG.75 Therefore, FDG

imaging of atherosclerotic lesions may be of incremental

benefit when performed in conjunction with angiogra-

phy (e.g., CTA or MRA) to identify culprit lesions at

high risk of rupture.75

Large Arterial Vasculature

Possibly, the first clinical experience of imaging

FDG uptake in large arterial vasculature was reported by

Yun et al.76 From a cohort of 156 patients referred for

various clinical indications, Yun et al77 reported that

51% of subjects had evidence for FDG uptake at the

level of the abdominal aorta, 51% at the iliac, and 63%

at proximal femoral arteries. Along all vascular beds,

age and hypercholesterolemia were correlated with the

degree of FDG uptake.77 Of further interest, a variation

existed among the atherosclerotic risk factors associated

with FDG uptake across vascular beds.77 These risk

factors included age and hypercholesterolemia (abdom-

inal aorta and iliac arteries), hypertension (iliac arteries),

and diabetes (femoral arteries).77 These findings suggest

that each atherogenic risk factor may have non-uniform

potency in contributing to disease progression in differ-

ent vascular beds. In addition to inflammation, aging has

been associated with increased aortic wall and calcifi-

cation volume, as well as metabolically active inflamed

lesions78-80 Female patients, patients with cardiovascu-

lar disease and those with cardiovascular risk factors

have also been noted to present with increased FDG

uptake or highly inflamed plaques, while diabetic

patients may have more pronounced aortic

calcification.81

Coronary Vasculature

Imaging of the coronary vasculature has proven

more challenging due to the small size of these vessels.

Confounders such as cardiac motion, myocardial FDG

uptake and the spatial resolution of PET have impeded

progress in imaging FDG uptake in coronary vessels.

Despite such challenges, Dunphy et al82 presented what

may be the first clinical experience of imaging coronary

vasculature using FDG. They evaluated calcification and

FDG uptake within the coronary arteries of 78 patients

referred for oncology imaging82 and found that there

was a significant correlation between coronary FDG

uptake and abnormal myocardial perfusion in 32

patients.82 FDG uptake was also associated with cardiac

risk factors, although no cardiac events were reported

during a follow-up period of 7 months.82 However, 34

patients were excluded from the analysis due to severe

motion artifacts. Similarly, in a larger cohort assessed by

Saam et al,83 FDG uptake at the left anterior descending

artery would only be assessed 55% of patients. None-

theless, uptake was related to hypertension, coronary

heart disease, body mass index, calcified plaque burden,

and pericardial fat volume.

In order to suppress myocardial FDG uptake,

Wykrzykowska et al84 instructed patients to consume a

low-carbohydrate, high-fat meal the night prior to

imaging and drink a vegetable oil-based drink on the

morning of the imaging study. In 32 patients with a

history of treated malignancy and who underwent both

FDG PET/CT and cardiac catherization, good cardiac

(muscle) FDG suppression was achieved in 63% of

patients.84 Coronary FDG uptake was identified in 15

patients, and when compared to angiography results,

there was a trend toward an association between

anatomic disease and metabolic FDG uptake.84 Further-

more, FDG uptake in the left main coronary artery has

been shown to be higher in patients presenting with

acute coronary syndrome when compared to those with

stable angina.85

Multi-vascular Disease

The interrelationship of atherosclerotic disease

across arterial beds has also been evaluated using FDG

imaging. Studies suggest that among different vascular

beds, there is evidence for variable FDG uptake,82,86

while there is a positive relationship between uptake in

adjacent territories and along paired left and right

arterial beds.87 Multi-vascular evaluation of disease has

been proposed, given that high levels of FDG uptake

across major vascular beds including the aorta, iliac, and

carotid arteries has been shown to be predictive of future

cardiovascular events.88

In terms of identifying patients at greatest risk, older

patients presenting with more cardiovascular risk factors

tend to have more inflamed active and calcified inactive

plaques.89 Although quantification of FDG uptake is a

highly reproducible measure, it does vary over time

suggesting that inflammation may be a transient feature

of atherosclerosis which waxes and wanes as disease

progresses.51,90-92
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THE EMERGENCE OF [18F]FDG IN CLINICAL
TRIALS

Serial FDG PET scanning has the potential to

evaluate changes in inflammatory activity. Lifestyle

modification induces a detectable reduction in FDG

uptake within aortic and iliac vasculature.93 Likewise,

reduced FDG uptake in the aorta and carotid vessels has

been observed in association with Simvastatin lipid-

lowering therapy94 (Figure 5). Furthermore, in patients

randomized to low- and high-dose Atorvastatin therapy

and followed for 6 months, high-dose therapy was

associated with significantly reduced FDG uptake at

the femoral artery and aorta.95 A similar reduction in

inflammation has also been observed following treat-

ment with Atorvastatin for 12 weeks.96

More recently, 130 patients were randomized to

either dalcetrapib (a novel HDL raising drug) or placebo

to determine whether dalcetrapib modulates plaque pro-

gression and inflammation.36 Treated patients had

reduced FDG uptake at the most diseased segments of

carotid artery.36 Upon dividing patients into three tertiles

according to total change in vessel area at 24 months,

patients in the two lowest tertiles had reduced vascular

inflammation observed after 6 months (P = .01).36 Thus,

FDG PET may be a sensitive and specific marker to non-

invasively monitor disease progression and response to

therapy. Ongoing trials such as the Canadian Atheroscle-

rosis Imaging Network (CAIN) will contribute toward

validating and establishing FDG PET against advanced

immunohistology, as well as develop other imaging-

derived biomarkers using a multimodality approach to

characterize aspects of plaque biology, disease burden,

and identifying high-risk lesions.

LIMITATIONS OF PET/CT IMAGING

Given that FDG imaging of vasculature is a

relatively new area of science and investigation, it

suffers from several limitations. Although FDG uptake

is related to macrophage expression, direct evidence

demonstrating that FDG is taken up directly into

macrophage cells is still lacking. This may be achiev-

able in the future with higher resolution imaging and

amplified immunohistology. Imaging coronary vascula-

ture with FDG continues to be hampered by myocardial

motion and myocardial FDG uptake. Acquiring respira-

tory- and cardiac-gated images may reduce the impact of

coronary vessel motion. Furthermore, as described,

patient preparation and diets may lower myocardial

FDG uptake.

Serial imaging is required to accurately stage

atherosclerosis as it matures, waxes, and wanes. PET

Figure 5. Reduced [18F]FDG following simvastatin therapy. Representative images of a patient
on dietary management alone (top row). Three-months of dietary management alone had no impact
upon FDG uptake in aortic and carotid vasculature (arrows). However, FDG uptake is visibly
reduced in the carotid arteries and aortic arch following 3 months of therapy with simvastatin
(middle row). Hybrid FDG PET/CT images demonstrate that following 3 months of therapy with
simvastatin, there is no evidence for visible FDG uptake (bottom row) (Reprinted from Ref94with
permission Elsevier).
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and CT imaging requires exposure to radiation which

currently precludes the feasibility of frequent serial

imaging. Algorithms to reduce patient radiation expo-

sure are under development and will eventually

contribute toward enabling serial imaging. Hybrid

PET/MRI and PET/CT imaging also require accurate

image co-registration between both modalities, espe-

cially when evaluating small structures such as the

internal carotid vasculature. Slight patient motion

between image acquisitions can result in misalignment

that can bias attenuation correction, precluding accurate

co-localization, and image interpretation. The use of

neck-braces and hybrid scanning systems can signifi-

cantly reduce this.

EMERGING PET/CT IMAGING PROBES FOR
HUMAN ATHEROSCLEROSIS

With the limitations of FDG and the complexity of

atherosclerotic process, other surrogate makers of inflam-

mation have also been used in human including:

[11C]PK11195, [11C]choline and 68Ga-[1,4,7,10-tetraa-

zacyclododecane-N,N0,N00,N9000-tetraacetic acid]-D-Phe1,

Tyr3-octreotate (DOTATATE) (Table 1). [11C]PK11195

is a selective ligand of a translocator protein that

is highly expressed by macrophages.97-99 Similarly,

[68Ga]DOTATATE binds to somatostatin receptors sub-

type 2 that are expressed by macrophages.100 The uptake of

[11C]PK11195 and [68Ga]DOTATATE are considered to

be indicative of macrophage density within plaque.

[11C]choline differs in that it is taken up by inflammatory

cells—primarily macrophages, following which it under-

goes phosphorylation and is metabolized into forming

phosphatidylcholine that is eventually incorporated into the

cellular membrane.101 Other tracers such as Annexin-V

that are currently being utilized to detect apoptosis may be

more specific markers of phagocytosing macrophages are

being evaluated as single-photon emission computed

tomography radiotracers but can also be labeled with

18F.102-104

In addition to inflammation, calcification of plaque

may also contribute toward potentiating plaque vulner-

ability.105-107 Hydroxyapatite is expressed in regions

with active calcium deposition. [18F]sodium fluoride

(NaF) binds to hydroxyapatite molecules by replacing

hydroxyl groups, and could, therefore, serve as a

surrogate marker of active calcification within plaque108

(Figure 6). Early findings suggest that NaF uptake

imaged with PET may identify regions of active calcium

deposition.109 Recently, NaF has been applied in coro-

nary vasculature where compared to FDG, there is very

little competing radiotracer uptake by myocardium

resulting in high target-to-background signal.109

Figure 6. NaF PET/CT imaging of left and right internal carotid arteries of active calcification in a
72-year-old symptomatic patient evaluated at the University of Ottawa Heart Institute. Upper row
evidence of NaF uptake with a small foci of calcification on CT in the left internal carotid
symptomatic culprit vessel. There is a mismatch between the region of NaF uptake and calcification
on CT. Lower row Evidence of calcium nodules with matched NaF uptake at the right internal
carotid artery.
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These tracers are still very early in development and

application. Further studies are required to establish and

validate them prior to wider application in clinical

research and potential future clinical application.

INTEGRATION OF PET/CT IMAGING
BIOMARKERS TO UNDERSTAND PLAQUE

PROGRESSION

Utilizing PET/CT imaging biomarkers, it may be

possible to non-invasively stage lesions and assess

different aspects of plaque progression. Among a cohort

of 45 oncology patients, plaque was characterized for

inflammation (FDG uptake), active mineral deposition

(NaF uptake) and calcification (CT).109 Of 105 lesions

that had NaF uptake, 81 (77.1%) had evidence of

calcification on CT, while 18 (14.5%) had evidence of

FDG uptake.109 Therefore, one could hypothesize that

imaging macrophages with FDG, active calcification

imaging with NaF and calcium deposition with com-

puted tomography could be markers of independent

processes, and that these markers could be utilized to

stage atheroma formation, disease progression and

potentially plaque and patient vulnerability.

One may speculate that in the early stages of

advanced atherosclerosis, only FDG uptake would be

detected as inflammation is predominant process present

(Figure 7). Active calcification progressively initiates

given that the inflammatory cascade contributes to

calcium deposition. As inflammation peaks, early cal-

cium deposits would also be present. From imaging, this

phase of atheroma progression would be reflected by

uptake of both FDG and NaF. Once the density of

calcium deposits exceeds a certain threshold, these

would also be visible on CT—possibly as early speckled

calcification (a presumed marker of risk on CT

Figure 7. A proposed schematic staging inflammatory and calcification activity within athero-
sclerotic lesions with FDG and NaF as imaging biomarkers. During early stages of atherosclerosis,
inflammation is the predominant mechanism active within plaque. During these stages, [18F]FDG
may be taken up by the lesion. As inflammation peaks, the risk of plaque rupture may increase.
Inflammation also contributes toward initiating calcium metabolism within lesions that results in
the formation of early calcium deposits. This would be reflected by uptake of both FDG and
hydroxyapatite-specific [18F]sodium fluoride (NaF). Once the density of calcium deposits exceeds
a certain threshold, it becomes visible with CT. During active calcification, plaque may still be
vulnerable. Eventually, the calcification and mineralization processes exceed the inflammatory
activity present within plaque, which might be demarcated by only NaF uptake (in the absence of
FDG), as well as calcium deposits on CT. Ongoing calcification eventually leads to forming an end-
stage stable atheroma that is densely calcified with only evidence for calcium on CT. Model of
plaque progression (top bar) is adapted from Koenig and Khuseyinova115.
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angiography studies).30 Eventually, calcification and

mineralization processes would exceed the inflammatory

activity present within plaque. At this stage, there would

be evidence of NaF uptake in the absence of FDG as

well as calcium deposits on CT. Ongoing calcification

may finally lead to development of an end-stage

longstanding atheroma that is densely calcified with

very little active calcium turnover. At this final stage,

there would only be evidence for calcium on CT.

CONCLUSION

Considerable advancement has occurred in imaging

atherosclerosis, with FDG PET/CT at the forefront for

characterizing actively inflamed plaque. FDG uptake

within plaque has transitioned from an incidental finding

to a potential biomarker of vulnerable plaque that has

even been implemented to evaluate the efficacy of

vascular risk reduction therapy. Despite the proliferation

of imaging research, significant progress is yet to be

achieved in fully understanding the molecular biology of

plaque progression and rupture. Recent pre-clinical

developments may help in understanding how FDG

and other novel tracers track inflammation in

plaque.42,110,111

While FDG imaging has enhanced our understand-

ing of the inflammatory processes that underlie

atherosclerosis, further studies are needed to validate

FDG uptake. It also remains to be determined whether

FDG uptake within plaque could be a specific marker of

activated, polarized M1 (pro-inflammatory) or M2 (anti-

inflammatory) macrophages,112 as validated by

advanced immunohistology. Furthermore, whether

FDG uptake is truly predictive of future cardiovascular

events and outcomes remains to be determined. Also,

while reductions in FDG uptake have been observed

following therapies that modify vascular risk, to date, a

reduction in subsequent downstream vascular events has

only been demonstrated in small observational studies.

Prospective trials will further yield insight into the role

of FDG to detect inflamed carotid plaque, as validated

by advanced immunohistochemistry in patients with

high-risk carotid artery disease36,113 and its role in

imaging other vascular beds as in the BIOIMAGE

study.114 Furthermore, although FDG has advantages in

light of its widespread availability and is currently the

PET/CT imaging biomarker of choice for large trials

evaluating plaque inflammation and progression, whe-

ther it will be the optimal PET/CT plaque imaging

biomarker remains to determined.

While we have moved far beyond da Vinci’s initial

gross observations 500 years ago to visualizing inherent

processes within plaque, we still need to bridge the gap

between translating imaging of atherosclerosis to

accurately predicting life-threatening vascular events.

At that point, we may begin to realize imaging-guided

personalized care for patients with atherosclerosis.
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