331 research outputs found

    Modelling stratospheric polar ozone using objective analysis

    Get PDF
    We have studied the development of the austral ozone hole using a 3-D spectral chemical transport model at R15 resolution for the period 15th September to 15th October, 1991. The model is driven by objectively analyzed wind fields obtained from the Canadian Meteorological Center and uses the chemical module developed by Kaminski (1992). Although extensive processing of NO(y) and Cl(x) occurs within the model, the ozone hole that develops appears shallow and ephemeral. Analysis of the results indicate that the meridional transport of ozone is sufficient to overwhelm the substantial chemical depletion that does occur. We suggest that the low resolution objectively analyzed data used is unable to capture the essential isolated nature of the vortex

    Stratospheric warming influence on the mesosphere/lower thermosphere as seen by the extended CMAM

    Get PDF
    The response of the upper mesosphere/lower thermosphere region to major sudden stratospheric warming (SSW) is examined employing temperature, winds, NOX and CO constituents from the extended Canadian Middle Atmosphere Model (CMAM) with continuous incremental nudging below 10 hPa (~ 30 km). The model results considered cover high latitudes (60–85° N) from 10 to 150 km height for the December–March period of 2003/2004, 2005/2006 and 2008/2009, when some of the strongest SSWs in recent years were observed. NOX and CO are used as proxies for examining transport. Comparisons with ACE-FTS (Atmospheric Chemistry Experiment–Fourier Transform Spectrometer) satellite observations show that the model represents well the dynamics of the upper mesosphere/lower thermosphere region, the coupling of the stratosphere–mesosphere, and the NOX and CO transport. New information is obtained on the upper mesosphere/lower thermosphere up to 150 km showing that the NOX volume mixing ratio in the 2003/2004 winter was very perturbed indicating transport from the lower atmosphere and intense mixing with large NOX influx from the thermosphere compared to 2006 and 2009. These results, together with those from other models and observations, clearly show the impact of stratospheric warmings on the thermosphere

    Assessing the impact of shipping emissions on air pollution in the Canadian Arctic and northern regions: current and future modelled scenarios

    Get PDF
    A first regional assessment of the impact of shipping emissions on air pollution in the Canadian Arctic and northern regions was conducted in this study. Model simulations were carried out on a limited-area domain (at 15&thinsp;km horizontal resolution) centred over the Canadian Arctic, using the Environment and Climate Change Canada's on-line air quality forecast model, GEM-MACH (Global Environmental Multi-scale – Modelling Air quality and CHemistry), to investigate the contribution from the marine shipping emissions over the Canadian Arctic waters (at both present and projected future levels) to ambient concentrations of criteria pollutants (O3, PM2.5, NO2, and SO2), atmospheric deposition of sulfur (S) and nitrogen (N), and atmospheric loading and deposition of black carbon (BC) in the Arctic. Several model upgrades were introduced for this study, including the treatment of sea ice in the dry deposition parameterization, chemical lateral boundary conditions, and the inclusion of North American wildfire emissions. The model is shown to have similar skills in predicting ambient O3 and PM2.5 concentrations in the Canadian Arctic and northern regions, as the current operational air quality forecast models in North America and Europe. In particular, the model is able to simulate the observed O3 and PM components well at the Canadian high Arctic site, Alert. The model assessment shows that, at the current (2010) level, Arctic shipping emissions contribute to less than 1&thinsp;% of ambient O3 concentration over the eastern Canadian Arctic and between 1 and 5&thinsp;% of ambient PM2.5 concentration over the shipping channels. Arctic shipping emissions make a much greater contributions to the ambient NO2 and SO2 concentrations, at 10&thinsp;%–50&thinsp;% and 20&thinsp;%–100&thinsp;%, respectively. At the projected 2030 business-as-usual (BAU) level, the impact of Arctic shipping emissions is predicted to increase to up to 5&thinsp;% in ambient O3 concentration over a broad region of the Canadian Arctic and to 5&thinsp;%–20&thinsp;% in ambient PM2.5 concentration over the shipping channels. In contrast, if emission controls such as the ones implemented in the current North American Emission Control Area (NA ECA) are to be put in place over the Canadian Arctic waters, the impact of shipping to ambient criteria pollutants would be significantly reduced. For example, with NA-ECA-like controls, the shipping contributions to the population-weighted concentrations of SO2 and PM2.5 would be brought down to below the current level. The contribution of Canadian Arctic shipping to the atmospheric deposition of sulfur and nitrogen is small at the current level, &lt;&thinsp;5&thinsp;%, but is expected to increase to up to 20&thinsp;% for sulfur and 50&thinsp;% for nitrogen under the 2030 BAU scenario. At the current level, Canadian Arctic shipping also makes only small contributions to BC column loading and BC deposition, with &lt;&thinsp;0.1&thinsp;% on average and up to 2&thinsp;% locally over the eastern Canadian Arctic for the former, and between 0.1&thinsp;% and 0.5&thinsp;% over the shipping channels for the latter. The impacts are again predicted to increase at the projected 2030 BAU level, particularly over the Baffin Island and Baffin Bay area in response to the projected increase in ship traffic there, e.g., up to 15&thinsp;% on BC column loading and locally exceeding 30&thinsp;% on BC deposition. Overall, the study indicates that shipping-induced changes in atmospheric composition and deposition are at regional to local scales (particularly in the Arctic). Climate feedbacks are thus likely to act at these scales, so climate impact assessments will require modelling undertaken at much finer resolutions than those used in the existing radiative forcing and climate impact assessments.</p

    TLR2, but Not TLR4, Is Required for Effective Host Defence against Chlamydia Respiratory Tract Infection in Early Life

    Get PDF
    Chlamydia pneumoniae commonly causes respiratory tract infections in children, and epidemiological investigations strongly link infection to the pathogenesis of asthma. The immune system in early life is immature and may not respond appropriately to pathogens. Toll-like receptor (TLR)2 and 4 are regarded as the primary pattern recognition receptors that sense bacteria, however their contribution to innate and adaptive immunity in early life remains poorly defined. We investigated the role of TLR2 and 4 in the induction of immune responses to Chlamydia muridarum respiratory infection, in neonatal wild-type (Wt) or TLR2-deficient (−/−), 4−/− or 2/4−/− BALB/c mice. Wt mice had moderate disease and infection. TLR2−/− mice had more severe disease and more intense and prolonged infection compared to other groups. TLR4−/− mice were asymptomatic. TLR2/4−/− mice had severe early disease and persistent infection, which resolved thereafter consistent with the absence of symptoms in TLR4−/− mice. Wt mice mounted robust innate and adaptive responses with an influx of natural killer (NK) cells, neutrophils, myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells, and activated CD4+ and CD8+ T-cells into the lungs. Wt mice also had effective production of interferon (IFN)γ in the lymph nodes and lung, and proliferation of lymph node T-cells. TLR2−/− mice had more intense and persistent innate (particularly neutrophil) and adaptive cell responses and IL-17 expression in the lung, however IFNγ responses and T-cell proliferation were reduced. TLR2/4−/− mice had reduced innate and adaptive responses. Most importantly, neutrophil phagocytosis was impaired in the absence of TLR2. Thus, TLR2 expression, particularly on neutrophils, is required for effective control of Chlamydia respiratory infection in early life. Loss of control of infection leads to enhanced but ineffective TLR4-mediated inflammatory responses that prolong disease symptoms. This indicates that TLR2 agonists may be beneficial in the treatment of early life Chlamydia infections and associated diseases
    • …
    corecore