206 research outputs found

    Defining Medical Futility and Improving Medical Care

    Get PDF
    It probably should not be surprising, in this time of soaring medical costs and proliferating technology, that an intense debate has arisen over the concept of medical futility. Should doctors be doing all the things they are doing? In particular, should they be attempting treatments that have little likelihood of achieving the goals of medicine? What are the goals of medicine? Can we agree when medical treatment fails to achieve such goals? What should the physician do and not do under such circumstances? Exploring these issues has forced us to revisit the doctor-patient relationship and the relationship of the medical profession to society in a most fundamental way. Medical futility has both a quantitative and qualitative component. I maintain that medical futility is the unacceptable likelihood of achieving an effect that the patient has the capacity to appreciate as a benefit. Both emphasized terms are important. A patient is neither a collection of organs nor merely an individual with desires. Rather, a patient (from the word “to suffer”) is a person who seeks the healing (meaning “to make whole”) powers of the physician. The relationship between the two is central to the healing process and the goals of medicine. Medicine today has the capacity to achieve a multitude of effects, raising and lowering blood pressure, speeding, slowing, and even removing and replacing the heart, to name but a minuscule few. But none of these effects is a benefit unless the patient has at the very least the capacity to appreciate it. Sadly, in the futility debate wherein some critics have failed or refused to define medical futility an important area of medicine has in large part been neglected, not only in treatment decisions at the bedside, but in public discussions—comfort care—the physician’s obligation to alleviate suffering, enhance well being and support the dignity of the patient in the last few days of life

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    Observation of B(s)0→J/ψpp¯ decays and precision measurements of the B(s)0 masses

    Get PDF
    The first observation of the decays B 0 ( s ) → J / ψ p ¯ p is reported, using proton-proton collision data corresponding to an integrated luminosity of 5.2     fb − 1 , collected with the LHCb detector. These decays are suppressed due to limited available phase space, as well as due to Okubo-Zweig-Iizuka or Cabibbo suppression. The measured branching fractions are B ( B 0 → J / ψ p ¯ p ) = [ 4.51 ± 0.40 ( stat ) ± 0.44 ( syst ) ] × 10 − 7 , B ( B 0 s → J / ψ p ¯ p ) = [ 3.58 ± 0.19 ( stat ) ± 0.39 ( syst ) ] × 10 − 6 . For the B 0 s meson, the result is much higher than the expected value of O ( 10 − 9 ) . The small available phase space in these decays also allows for the most precise single measurement of both the B 0 mass as 5279.74 ± 0.30 ( stat ) ± 0.10 ( syst )     MeV and the B 0 s mass as 5366.85 ± 0.19 ( stat ) ± 0.13 ( syst )     MeV

    Observation of the decay Λ <sub>b</sub> <sup>0</sup>  → ψ(2S)pπ<sup>−</sup>

    Get PDF
    International audienceThe Cabibbo-suppressed decay Λb0_{b}^{0}  → ψ(2S)pπ^{−} is observed for the first time using a data sample collected by the LHCb experiment in proton-proton collisions corresponding to 1.0, 2.0 and 1.9 fb1^{−1} of integrated luminosity at centre-of-mass energies of 7, 8 and 13 TeV, respectively. The ψ(2S) mesons are reconstructed in the μ+^{+}μ^{−} final state. The branching fraction with respect to that of the Λb0_{b}^{0}  → ψ(2S)pK^{−} decay mode is measured to b

    Test of lepton universality in bs+b \rightarrow s \ell^+ \ell^- decays

    Get PDF
    The first simultaneous test of muon-electron universality using B+K++B^{+}\rightarrow K^{+}\ell^{+}\ell^{-} and B0K0+B^{0}\rightarrow K^{*0}\ell^{+}\ell^{-} decays is performed, in two ranges of the dilepton invariant-mass squared, q2q^{2}. The analysis uses beauty mesons produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9 fb1\mathrm{fb}^{-1}. Each of the four lepton universality measurements reported is either the first in the given q2q^{2} interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-046.html (LHCb public pages

    Search for CP violation in Λb0→pK− and Λb0→pπ− decays

    Get PDF
    A search for CP violation in Λb0→pK− and Λb0→pπ− decays is presented using a sample of pp collisions collected with the LHCb detector and corresponding to an integrated luminosity of 3.0fb−1. The CP -violating asymmetries are measured to be ACPpK−=−0.020±0.013±0.019 and ACPpπ−=−0.035±0.017±0.020, and their difference ACPpK−−ACPpπ−=0.014±0.022±0.010, where the first uncertainties are statistical and the second systematic. These are the most precise measurements of such asymmetries to date

    Observation and branching fraction measurement of the decay Ξb- → Λ0 bπ -

    Get PDF

    Evidence for an nc(1S)ff- resonance in B0 yc(1S)K+ decays

    Get PDF
    A Dalitz plot analysis of B0→ηc(1S)K+π- decays is performed using data samples of pp collisions collected with the LHCb detector at centre-of-mass energies of s=7,8 and 13TeV , corresponding to a total integrated luminosity of 4.7fb-1 . A satisfactory description of the data is obtained when including a contribution representing an exotic ηc(1S)π- resonant state. The significance of this exotic resonance is more than three standard deviations, while its mass and width are 4096±20-22+18MeV and 152±58-35+60MeV , respectively. The spin-parity assignments JP=0+ and JP=1- are both consistent with the data. In addition, the first measurement of the B0→ηc(1S)K+π- branching fraction is performed and gives B(B0→ηc(1S)K+π-)=(5.73±0.24±0.13±0.66)×10-4, where the first uncertainty is statistical, the second systematic, and the third is due to limited knowledge of external branching fractions

    Precision measurement of CP\it{CP} violation in the penguin-mediated decay Bs0ϕϕB_s^{0}\rightarrow\phi\phi

    Get PDF
    A flavor-tagged time-dependent angular analysis of the decay Bs0ϕϕB_s^{0}\rightarrow\phi\phi is performed using pppp collision data collected by the LHCb experiment at % at s=13\sqrt{s}=13 TeV, the center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb^{-1}. The CP\it{CP}-violating phase and direct CP\it{CP}-violation parameter are measured to be ϕssˉs=0.042±0.075±0.009\phi_{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 rad and λ=1.004±0.030±0.009|\lambda|=1.004\pm 0.030 \pm 0.009 , respectively, assuming the same values for all polarization states of the ϕϕ\phi\phi system. In these results, the first uncertainties are statistical and the second systematic. These parameters are also determined separately for each polarization state, showing no evidence for polarization dependence. The results are combined with previous LHCb measurements using pppp collisions at center-of-mass energies of 7 and 8 TeV, yielding ϕssˉs=0.074±0.069\phi_{s\bar{s}s} = -0.074 \pm 0.069 rad and lambda=1.009±0.030|lambda|=1.009 \pm 0.030. This is the most precise study of time-dependent CP\it{CP} violation in a penguin-dominated BB meson decay. The results are consistent with CP\it{CP} symmetry and with the Standard Model predictions.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-001.html (LHCb public pages
    corecore