166 research outputs found

    Evaluation of α-hydroxycinnamic Acids as Pyruvate Carboxylase Inhibitors

    Get PDF
    Through a structure-based drug design project (SBDD), potent small molecule inhibitors of pyruvate carboxylase (PC) have been discovered. A series of α-keto acids (7) and α-hydroxycinnamic acids (8) were prepared and evaluated for inhibition of PC in two assays. The two most potent inhibitors were 3,3′-(1,4-phenylene)bis[2-hydroxy-2-propenoic acid] (8u) and 2-hydroxy-3-(quinoline-2-yl)propenoic acid (8v) with IC50 values of 3.0 ± 1.0 μM and 4.3 ± 1.5 μM respectively. Compound 8v is a competitive inhibitor with respect to pyruvate (Ki = 0.74 μM) and a mixed-type inhibitor with respect to ATP, indicating that it targets the unique carboxyltransferase (CT) domain of PC. Furthermore, compound 8v does not significantly inhibit human carbonic anhydrase II, matrix metalloproteinase-2, malate dehydrogenase or lactate dehydrogenase

    Analysis of Nociceptive Information Encoded in the Temporal Discharge Patterns of Cutaneous C-Fibers

    Get PDF
    The generation of pain signals from primary afferent neurons is explained by a labeled-line code. However, this notion cannot apply in a simple way to cutaneous C-fibers, which carry signals from a variety of receptors that respond to various stimuli including agonist chemicals. To represent the discharge patterns of C-fibers according to different agonist chemicals, we have developed a quantitative approach using three consecutive spikes. By using this method, the generation of pain in response to chemical stimuli is shown to be dependent on the temporal aspect of the spike trains. Furthermore, under pathological conditions, gamma-aminobutyric acid resulted in pain behavior without change of spike number but with an altered discharge pattern. Our results suggest that information about the agonist chemicals may be encoded in specific temporal patterns of signals in C-fibers, and nociceptive sensation may be influenced by the extent of temporal summation originating from the temporal patterns.open0

    Regulation of specialised metabolites in Actinobacteria – Expanding the paradigms

    Get PDF
    The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media conditions. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role which these compounds play in their natural habitat as well as providing tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here we provide an overview of novel regulatory mechanisms that act in physiological, global, and cluster specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications

    The green algal underground : evolutionary secrets of desert cells

    Get PDF
    Author Posting. © American Institute of Biological Sciences, 2008. This article is posted here by permission of American Institute of Biological Sciences for personal use, not for redistribution. The definitive version was published in BioScience 58 (2008): 114-122, doi:10.1641/B580206.Microscopic, unicellular, free-living green algae are found in desert microbiotic crusts worldwide. Although morphologically simple, green algae in desert crusts have recently been found to be extraordinarily diverse, with membership spanning five green algal classes and encompassing many taxa new to science. This overview explores this remarkable diversity and its potential to lead to new perspectives on the diversity and evolution of green plants. Molecular systematic and physiological data gathered from desert taxa demonstrate that these algae are long-term members of desert communities, not transient visitors from aquatic habitats. Variations in desiccation tolerance and photophysiology among these algae include diverse evolutionary innovations that developed under selective pressures in the desert. Combined with the single embryophyte lineage to which more familiar terrestrial green plants belong, multiple desert green algal lineages provide independent evolutionary units that may enhance understanding of the evolution and ecology of eukaryotic photosynthetic life on land.This work was supported by grants from the National Aeronautics and Space Administration, Exobiology Program (EXB02-0042-0054) to L. A. L. and Z. G. C., from the National Science Foundation (DEB- 0529737) to L. A. L., and from the University of Connecticut Research Foundation to Z. G. C

    A Complex Cell Division Machinery Was Present in the Last Common Ancestor of Eukaryotes

    Get PDF
    Background: The midbody is a transient complex structure containing proteins involved in cytokinesis. Up to now, it has been described only in Metazoa. Other eukaryotes present a variety of structures implied in the last steps of cell division, such as the septum in fungi or the phragmoplast in plants. However, it is unclear whether these structures are homologous (derive from a common ancestral structure) or analogous (have distinct evolutionary origins). Recently, the proteome of the hamster midbody has been characterized and 160 proteins identified. Methodology/Principal Findings: Using phylogenomic approaches, we show here that nearly all of these 160 proteins (95%) are conserved across metazoan lineages. More surprisingly, we show that a large part of the mammalian midbody components (91 proteins) were already present in the last common ancestor of all eukaryotes (LECA) and were most likely involved in the construction of a complex multi-protein assemblage acting in cell division. Conclusions/Significance: Our results indicate that the midbodies of non-mammalian metazoa are likely very similar to the mammalian one and that the ancestor of Metazoa possessed a nearly modern midbody. Moreover, our analyses support the hypothesis that the midbody and the structures involved in cytokinesis in other eukaryotes derive from a large and complex structure present in LECA, likely involved in cytokinesis. This is an additional argument in favour of the idea of a comple

    AIB1 gene amplification and the instability of polyQ encoding sequence in breast cancer cell lines

    Get PDF
    BACKGROUND: The poly Q polymorphism in AIB1 (amplified in breast cancer) gene is usually assessed by fragment length analysis which does not reveal the actual sequence variation. The purpose of this study is to investigate the sequence variation of poly Q encoding region in breast cancer cell lines at single molecule level, and to determine if the sequence variation is related to AIB1 gene amplification. METHODS: The polymorphic poly Q encoding region of AIB1 gene was investigated at the single molecule level by PCR cloning/sequencing. The amplification of AIB1 gene in various breast cancer cell lines were studied by real-time quantitative PCR. RESULTS: Significant amplifications (5–23 folds) of AIB1 gene were found in 2 out of 9 (22%) ER positive cell lines (in BT-474 and MCF-7 but not in BT-20, ZR-75-1, T47D, BT483, MDA-MB-361, MDA-MB-468 and MDA-MB-330). The AIB1 gene was not amplified in any of the ER negative cell lines. Different passages of MCF-7 cell lines and their derivatives maintained the feature of AIB1 amplification. When the cells were selected for hormone independence (LCC1) and resistance to 4-hydroxy tamoxifen (4-OH TAM) (LCC2 and R27), ICI 182,780 (LCC9) or 4-OH TAM, KEO and LY 117018 (LY-2), AIB1 copy number decreased but still remained highly amplified. Sequencing analysis of poly Q encoding region of AIB1 gene did not reveal specific patterns that could be correlated with AIB1 gene amplification. However, about 72% of the breast cancer cell lines had at least one under represented (<20%) extra poly Q encoding sequence patterns that were derived from the original allele, presumably due to somatic instability. Although all MCF-7 cells and their variants had the same predominant poly Q encoding sequence pattern of (CAG)(3)CAA(CAG)(9)(CAACAG)(3)(CAACAGCAG)(2)CAA of the original cell line, a number of altered poly Q encoding sequences were found in the derivatives of MCF-7 cell lines. CONCLUSION: These data suggest that poly Q encoding region of AIB1 gene is somatic unstable in breast cancer cell lines. The instability and the sequence characteristics, however, do not appear to be associated with the level of the gene amplification

    Drosophila Nociceptors Mediate Larval Aversion to Dry Surface Environments Utilizing Both the Painless TRP Channel and the DEG/ENaC Subunit, PPK1

    Get PDF
    A subset of sensory neurons embedded within the Drosophila larval body wall have been characterized as high-threshold polymodal nociceptors capable of responding to noxious heat and noxious mechanical stimulation. They are also sensitized by UV-induced tissue damage leading to both thermal hyperalgesia and allodynia very similar to that observed in vertebrate nociceptors. We show that the class IV multiple-dendritic(mdIV) nociceptors are also required for a normal larval aversion to locomotion on to a dry surface environment. Drosophila melanogaster larvae are acutely susceptible to desiccation displaying a strong aversion to locomotion on dry surfaces severely limiting the distance of movement away from a moist food source. Transgenic inactivation of mdIV nociceptor neurons resulted in larvae moving inappropriately into regions of low humidity at the top of the vial reflected as an increased overall pupation height and larval desiccation. This larval lethal desiccation phenotype was not observed in wild-type controls and was completely suppressed by growth in conditions of high humidity. Transgenic hyperactivation of mdIV nociceptors caused a reciprocal hypersensitivity to dry surfaces resulting in drastically decreased pupation height but did not induce the writhing nocifensive response previously associated with mdIV nociceptor activation by noxious heat or harsh mechanical stimuli. Larvae carrying mutations in either the Drosophila TRP channel, Painless, or the degenerin/epithelial sodium channel subunit Pickpocket1(PPK1), both expressed in mdIV nociceptors, showed the same inappropriate increased pupation height and lethal desiccation observed with mdIV nociceptor inactivation. Larval aversion to dry surfaces appears to utilize the same or overlapping sensory transduction pathways activated by noxious heat and harsh mechanical stimulation but with strikingly different sensitivities and disparate physiological responses

    Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.)

    Full text link
    [EN] Nerium oleander is an ornamental species of high aesthetic value, grown in arid and semi- arid regions because of its drought tolerance, which is also considered as relatively resistant to salt; yet the biochemical and molecular mechanisms underlying oleander¿s stress toler- ance remain largely unknown. To investigate these mechanisms, one-year-old oleander seedlings were exposed to 15 and 30 days of treatment with increasing salt concentratio ns, up to 800 mM NaCl, and to complete withholding of irrigation; growth parameters and bio- chemical markers characteristic of conserved stress-response pathways were then deter- mined in stressed and control plants. Strong water deficit and salt stress both caused inhibition of growth, degradation of photosynthetic pigments, a slight (but statistically signifi- cant) increase in the leaf levels of specific osmolytes, and induction of oxidative stress¿as indicated by the accumulation of malondialdehyde (MDA), a reliable oxidative stress marker ¿accompanied by increases in the levels of total phenolic compounds and antioxidant fla- vonoids and in the specific activities of ascorbate peroxidase (APX) and glutathione reduc- tase (GR). High salinity, in addition, induced accumulation of Na + and Cl - in roots and leaves and the activation of superoxide dismutase (SOD) and catalase (CAT) activities. Apart from anatomical adaptations that protect oleander from leaf dehydration at moderate levels of stress, our results indicate that tolerance of this species to salinity and water deficit is based on the constitutive accumulation in leaves of high concentratio ns of soluble carbohydrates and, to a lesser extent, of glycine betaine, and in the activation of the aforementioned antiox- idant systems. Moreover, regarding specifically salt stress, mechanisms efficiently blocking transport of toxic ions from the roots to the aerial parts of the plant appear to contribute to a large extent to tolerance in Nerium oleanderThis work was financed by internal funds of the Polytechnic University of Valencia to Monica Boscaiu and Oscar Vicente. Dinesh Kumar’s stay in Valencia was financed by a NAMASTE fellowship from the European Union, and Mohamad Al Hassan was a recipient of an Erasmus Mundus pre-doctoral scholarship financed by the European Commission (Welcome Consortium).Kumar, D.; Al Hassan, M.; Naranjo Olivero, MA.; Agrawal, V.; Boscaiu, M.; Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE. 12(9). doi:10.1371/journal.pone.0185017Se018501712

    For whom and under what circumstances do school-based energy balance behavior interventions work? Systematic review on moderators

    Get PDF
    The aim of this review was to systematically review the results and quality of studies investigating the moderators of school-based interventions aimed at energy balance-related behaviors. We systematically searched the electronic databases of Pubmed, EMBASE, Cochrane, PsycInfo, ERIC and Sportdiscus. In total 61 articles were included. Gender, ethnicity, age, baseline values of outcomes, initial weight status and socioeconomic status were the most frequently studied potential moderators. The moderator with the most convincing evidence was gender. School-based interventions appear to work better for girls than for boys. Due to the inconsistent results, many studies reporting non-significant moderating effects, and the moderate methodological quality of most studies, no further consistent results were found. Consequently, there is lack of insight into what interventions work for whom. Future studies should apply stronger methodology to test moderating effects of important potential target group segmentations
    corecore