154 research outputs found

    Type Ia Supernovae Rates and Galaxy Clustering from the CFHT Supernova Legacy Survey

    Get PDF
    The Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS) has created a large homogeneous database of intermediate redshift (0.2 < z < 1.0) type Ia supernovae (SNe Ia). The SNLS team has shown that correlations exist between SN Ia rates, properties, and host galaxy star formation rates. The SNLS SN Ia database has now been combined with a photometric redshift galaxy catalog and an optical galaxy cluster catalog to investigate the possible influence of galaxy clustering on the SN Ia rate, over and above the expected effect due to the dependence of SFR on clustering through the morphology-density relation. We identify three cluster SNe Ia, plus three additional possible cluster SNe Ia, and find the SN Ia rate per unit mass in clusters at intermediate redshifts is consistent with the rate per unit mass in field early-type galaxies and the SN Ia cluster rate from low redshift cluster targeted surveys. We also find the number of SNe Ia in cluster environments to be within a factor of two of expectations from the two component SNIa rate model.Comment: 21 pages, 2 figures, 6 tables, accepted for publication in A

    The Supernova Legacy Survey 3-year sample: Type Ia Supernovae photometric distances and cosmological constraints

    Full text link
    We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. A flat LambdaCDM cosmological fit to 231 SNLS high redshift Type Ia supernovae alone gives Omega_M = 0.211 +/- 0.034(stat) +/- 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of +/- 0.026 on Omega_M. No clear evidence is found for a possible evolution of the slope (beta) of the colour-luminosity relation with redshift.Comment: (The SNLS Collaboration) 40 pages, 32 figures, Accepted in A&

    NTT and NOT spectroscopy of SDSS-II supernovae

    Get PDF
    Context. The SDSS-II Supernova Survey, conducted between 2005 and 2007, was designed to detect a large number of Type Ia supernovae (SNe Ia) around z~0.2, the redshift "gap" between low-z and high-z SN searches. The survey has provided multi-band photometric lightcurves for variable targets, and SN candidates were scheduled for spectroscopic observations, primarily to provide SN classification and accurate redshifts. We present SN spectra obtained in 2006 and 2007 using the NTT and the NOT. Aims. We provide an atlas of SN spectra in the range z =0.03-0.32 that complements the well-sampled lightcurves from SDSS-II in the forthcoming three-year SDSS SN cosmology analysis. The sample can, for example, be used for spectral studies of SNe Ia, which are critical for understanding potential systematic effects when SNe are used to determine cosmological distances. Methods. The spectra were reduced in a uniform manner, and special care was taken in estimating the uncertainties for the different processing steps. Host-galaxy light was subtracted when possible and the SN type fitted using the SuperNova IDentification code (SNID). We also present comparisons between spectral and photometric dating using SALT lightcurve fits to the photometry from SDSS-II, as well as the global distribution of our sample in terms of the lightcurve parameters: stretch and colour. Results. We report new spectroscopic data from 141 SNe Ia, mainly between -9 and +15 days from lightcurve maximum, including a few cases of multi-epoch observations. This homogeneous, host-galaxy subtracted, SN Ia spectroscopic sample is among the largest such data sets and unique in its redshift interval. The sample includes two potential SN 1991T-like SNe (SN 2006on and SN 2007ni) and one potential SN 2002cx-like SN (SN 2007ie). In addition, the new compilation includes spectra from 23 confirmed Type II and 8 Type Ib/c SNe.Comment: Accepted for publication in A&

    Preliminary Comparison of Two-Way Satellite Time and Frequency Transfer and GPS Common-View Time Transfer During the INTELSAT Field Trial

    Get PDF
    For a decade and a half Global Positioning System (GPS) common-view time transfer has greatly served the needs of primary timing laboratories for regular intercomparisons of remote atomic clocks. However, GPS as a one-way technique has natural limits and may not meet all challenges of the comparison of the coming new generation of atomic clocks. Two-way satellite time and frequency transfer (TWSTFT) is a promising technique which may successfully complement GPS. For two years, regular TWSTFT's have been performed between eight laboratories situated in both Europe and North America, using INTELSAT satellites. This has enabled an extensive direct comparison to be made between these two high performance time transfer methods. The performance of the TWSTFT and GPS common view methods are compared over a number of time-transfer links. These links use a variety of time-transfer hardware and atomic clocks and have baselines of substantially different lengths. The relative merits of the two time-transfer systems are discussed

    SNLS3: Constraints on Dark Energy Combining the Supernova Legacy Survey Three Year Data with Other Probes

    Full text link
    We present observational constraints on the nature of dark energy using the Supernova Legacy Survey three year sample (SNLS3) of Guy et al. (2010) and Conley et al. (2011). We use the 472 SNe Ia in this sample, accounting for recently discovered correlations between SN Ia luminosity and host galaxy properties, and include the effects of all identified systematic uncertainties directly in the cosmological fits. Combining the SNLS3 data with the full WMAP7 power spectrum, the Sloan Digital Sky Survey luminous red galaxy power spectrum, and a prior on the Hubble constant H0 from SHOES, in a flat universe we find omega_m=0.269+/-0.015 and w=-1.061+0.069-0.068 -- a 6.5% measure of the dark energy equation-of-state parameter w. The statistical and systematic uncertainties are approximately equal, with the systematic uncertainties dominated by the photometric calibration of the SN Ia fluxes -- without these calibration effects, systematics contribute only a ~2% error in w. When relaxing the assumption of flatness, we find omega_m=0.271+/-0.015, omega_k=-0.002+/-0.006, and w=-1.069+0.091-0.092. Parameterizing the time evolution of w as w(a)=w_0+w_a(1-a), gives w_0=-0.905+/-0.196, w_a=-0.984+1.094-1.097 in a flat universe. All of our results are consistent with a flat, w=-1 universe. The size of the SNLS3 sample allows various tests to be performed with the SNe segregated according to their light curve and host galaxy properties. We find that the cosmological constraints derived from these different sub-samples are consistent. There is evidence that the coefficient, beta, relating SN Ia luminosity and color, varies with host parameters at >4sigma significance (in addition to the known SN luminosity--host relation); however this has only a small effect on the cosmological results and is currently a sub-dominant systematic.Comment: Accepted for publication in ApJ. Data available from https://tspace.library.utoronto.ca/snl

    The Girgentana Goat Breed: A Zootechnical Overview on Genetics, Nutrition and Dairy Production Aspects

    Get PDF
    In recent years, there has been a great interest in recovering and preserving local livestock breeds. An interesting situation is represented by the Girgentana goat, an ancient local breed reared in Sicily. Over recent years, this breed has become almost extinct, in part as a consequence of the marked decrease in fresh goat milk consumption. On the basis of these considerations, several studies on its genetic structure and management aspects have been conducted in order to protect the Girgentana goat from the risk of extinction and recover its genetic and economic value. In this context, information on genetics, nutrition and dairy production aspects may have a crucial role in the improvement and management of the breed. Thus, this chapter describes some points of these applications through recent investigations on this goat breed

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    The core-collapse rate from the Supernova Legacy Survey

    Get PDF
    We use three years of data from the Supernova Legacy Survey (SNLS) to study the general properties of core-collapse and type Ia supernovae. This is the first such study using the "rolling search" technique which guarantees well-sampled SNLS light curves and good efficiency for supernovae brighter than i'~24. Using host photometric redshifts, we measure the supernova absolute magnitude distribution down to luminosities 4.5 mag fainter than normal SNIa. Using spectroscopy and light-curve fitting to discriminate against SNIa, we find a sample of 117 core-collapse supernova candidates with redshifts z < 0.4 (median redshift of 0.29) and measure their rate to be larger than the type Ia supernova rate by a factor 4.5±0.8(stat.)±0.6 (sys.). This corresponds to a core-collapse rate at z = 0.3 of [ 1.42±0.3(stat.)±0.3(sys.)] ×10-4 yr-1(h_70-1 Mpc)-3

    On the diversity of superluminous supernovae: ejected mass as the dominant factor

    Get PDF
    We assemble a sample of 24 hydrogen-poor super-luminous supernovae (SLSNe). Parameterizing the light curve shape through rise and decline timescales shows that the two are highly correlated. Magnetar-powered models can reproduce the correlation, with the diversity in rise and decline rates driven by the diffusion timescale. Circumstellar interaction models can exhibit a similar rise-decline relation, but only for a narrow range of densities, which may be problematic for these models. We find that SLSNe are approximately 3.5 magnitudes brighter and have light curves 3 times broader than SNe Ibc, but that the intrinsic shapes are similar. There are a number of SLSNe with particularly broad light curves, possibly indicating two progenitor channels, but statistical tests do not cleanly separate two populations. The general spectral evolution is also presented. Velocities measured from Fe II are similar for SLSNe and SNe Ibc, suggesting that diffusion time differences are dominated by mass or opacity. Flat velocity evolution in most SLSNe suggests a dense shell of ejecta. If opacities in SLSNe are similar to other SNe Ibc, the average ejected mass is higher by a factor 2-3. Assuming κ=0.1\kappa=0.1\,cm2^2\,g1^{-1}, we estimate a mean (median) SLSN ejecta mass of 10\,M_\odot (6\,M_\odot), with a range of 3-30\,M_\odot. Doubling the assumed opacity brings the masses closer to normal SNe Ibc, but with a high-mass tail. The most probable mechanism for generating SLSNe seems to be the core-collapse of a very massive hydrogen-poor star, forming a millisecond magnetar.Comment: 28 pages, 22 figs, 4 tables -- Updated on 2016-01-13 to fix typo in Table
    corecore