102 research outputs found

    L'agriculture dans le paysage de la MRC du Rocher-Percé : analyse et perspectives

    Get PDF
    Le maintien d'une « petite agriculture » dynamique et différenciée apparaît comme une voie d'avenir prometteuse pour la Gaspésie. Pourtant, celle pratiquée dans la MRC du Rocher-Percé est à une période charnière de son évolution: se renouveler ou disparaître. Envahissement de la friche dans les parcelles agricoles, perte de patrimoine naturel et bâti puis perte des liens entre producteurs et consommateurs sont les enjeux qui ont motivé le projet de mise en valeur de l'espace rural de la MRC par la reconnaissance de la multifonctionnalité de son agriculture. Au sein de cette démarche, et pour réaliser un portrait global du territoire agricole en préalable à une intervention, notre contribution consiste à étudier l'impact de l'agriculture dans le paysage et à enquêter sur la perception qu'ont les résidants et les touristes de ces mêmes paysages, des rôles de l'agriculture et de son avenir dans la MRC. Au-delà du projet, le phénomène récent de revalorisation des campagnes et d'une agriculture\ud « vivante » et respectueuse de l'environnement, ou multifonctionnelle, nous invite à mieux comprendre les liens, concrets et abstraits, qui s'établissent entre ces personnes et le territoire agricole, donc à mieux cerner leur territorialité. Nos résultats indiquent que, malgré le déclin de l'activité dans la MRC, une faible visibilité et des occasions de contact plutôt rares, l'agriculture est perçue très positivement. Cela dit, pour permettre à la collectivité et aux visiteurs une appropriation plus complète du territoire, c'est-à-dire une utilisation, une connaissance et une image renouvelées du territoire agricole et de l'agriculture, trois enjeux ont été identifiés: assurer la concertation entre les agriculteurs et les propriétaires de terres en friche, maximiser la visibilité de l'agriculture puis améliorer l'accès aux produits de l'agriculture locale. L'implantation de systèmes agroforestiers, associant les arbres et les cultures sur des parcelles agricoles ou défrichées, est l'une des premières interventions à être mise en oeuvre par le projet. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Gaspésie, Agriculture, Multifonctionnalité, Paysages, Territorialité, Agroforesterie

    A systematic review of moral reasons on orphan drug reimbursement

    Get PDF
    The number of market approvals of orphan medicinal products (OMPs) has been increasing steadily in the last 3 decades. While OMPs can offer a unique chance for patients suffering from rare diseases, they are usually very expensive. The growing number of approved OMPs increases their budget impact despite their low prevalence, making it pressing to find solutions to ethical challenges on how to fairly allocate scarce healthcare resources under this context. One potential solution could be to grant OMPs special status when considering them for reimbursement, meaning that they are subject to different, and less stringent criteria than other drugs. This study aims to provide a systematic analysis of moral reasons for and against such a special status for the reimbursement of OMPs in publicly funded healthcare systems from a multidisciplinary perspective.; With a systematic review of reasons, we identified 39 reasons represented in 243 articles (scientific and grey literature) for and against special status for the reimbursement of OMPs, then categorized them into nine topics. Taking a multidisciplinary perspective, we found that most articles came from health policy (n = 103) and health economics (n = 49). More articles took the position for a special status of OMPs (n = 97) than those against it (n = 31) and there was a larger number of reasons identified in favour (29 reasons) than against (10 reasons) this special status.; Results suggest that OMP reimbursement issues should be assessed and analysed from a multidisciplinary perspective. Despite the higher occurrence of reasons and articles in favour of a special status, there is no clear-cut solution for this ethical challenge. The binary perspective of whether or not OMPs should be granted special status oversimplifies the issue: both OMPs and rare diseases are too heterogeneous in their characteristics for such a binary perspective. Thus, the scientific debate should focus less on the question of disease prevalence but rather on how the important variability of different OMPs concerning e.g. target population, cost-effectiveness, level of evidence or mechanism of action could be meaningfully addressed and implemented in Health Technology Assessments

    Surface Analysis by Secondary Ion Mass Spectrometry (SIMS): Principles and Applications from Swiss laboratories

    Get PDF
    Secondary Ion Mass Spectrometry (SIMS) extracts chemical, elemental, or isotopic information about a localized area of a solid target by performing mass spectrometry on secondary ions sputtered from its surface by the impact of a beam of charged particles. This primary beam sputters ionized atoms and small molecules (as well as many neutral particles) from the upper few nanometers of the sample surface. The physical basis of SIMS has been applied to a large range of applications utilizing instruments optimized with different types of mass analyzer, either dynamic SIMS with a double focusing mass spectrometer or static SIMS with a Time of Flight (TOF) analyzer. Here, we present a short review of the principles and major applications of three different SIMS instruments located in Switzerland

    Sign reversal of the AC and DC supercurrent diode effect and 0-π\pi-like transitions in ballistic Josephson junctions

    Full text link
    The recent discovery of intrinsic supercurrent diode effect, and its prompt observation in a rich variety of systems, has shown that nonreciprocal supercurrents naturally emerge when both space- and time-inversion symmetries are broken. In Josephson junctions, nonreciprocal supercurrent can be conveniently described in terms of spin-split Andreev states. Here, we demonstrate a sign reversal of the supercurrent diode effect, in both its AC and DC manifestations. In particular, the AC diode effect -- i.e., the asymmetry of the Josephson inductance as a function of the supercurrent -- allows us to probe the current-phase relation near equilibrium. Using a minimal theoretical model, we can then link the sign reversal of the AC diode effect to the so-called 0-π\pi-like transition, a predicted, but still elusive feature of multi-channel junctions. Our results demonstrate the potential of inductance measurements as sensitive probes of the fundamental properties of unconventional Josephson junctions.Comment: 13 pages, 6 figure

    Targeted removal of macrophage-secreted interleukin-1 receptor antagonist protects against lethal Candida albicans sepsis.

    Get PDF
    Invasive fungal infections are associated with high mortality rates, and the lack of efficient treatment options emphasizes an urgency to identify underlying disease mechanisms. We report that disseminated Candida albicans infection is facilitated by interleukin-1 receptor antagonist (IL-1Ra) secreted from macrophages in two temporally and spatially distinct waves. Splenic CD169+ macrophages release IL-1Ra into the bloodstream, impeding early neutrophil recruitment. IL-1Ra secreted by monocyte-derived tissue macrophages further impairs pathogen containment. Therapeutic IL-1Ra neutralization restored the functional competence of neutrophils, corrected maladapted hyper-inflammation, and eradicated the otherwise lethal infection. Conversely, augmentation of macrophage-secreted IL-1Ra by type I interferon severely aggravated disease mortality. Our study uncovers how a fundamental immunoregulatory mechanism mediates the high disease susceptibility to invasive candidiasis. Furthermore, interferon-stimulated IL-1Ra secretion may exacerbate fungal dissemination in human patients with secondary candidemia. Macrophage-secreted IL-1Ra should be considered as an additional biomarker and potential therapeutic target in severe systemic candidiasis

    MEG in the macaque monkey and human: distinguishing cortical fields in space and time.

    Get PDF
    Magnetoencephalography (MEG) is an increasingly popular non-invasive tool used to record, on a millisecond timescale, the magnetic field changes generated by cortical neural activity. MEG has the advantage, over fMRI for example, that it is a direct measure of neural activity. In the current investigation we used MEG to measure cortical responses to tactile and auditory stimuli in the macaque monkey. We had two aims. First, we sought to determine whether MEG, a technique that may have low spatial accuracy, could be used to distinguish the location and organization of sensory cortical fields in macaque monkeys, a species with a relatively small brain compared to that of the human. Second, we wanted to examine the temporal dynamics of cortical responses in the macaque monkey relative to the human. We recorded MEG data from anesthetized monkeys and, for comparison, from awake humans that were presented with simple tactile and auditory stimuli. Neural source reconstruction of MEG data showed that primary somatosensory and auditory cortex could be differentiated and, further, that separate representations of the digit and lip within somatosensory cortex could be identified in macaque monkeys as well as humans. We compared the latencies of activity from monkey and human data for the three stimulation types and proposed a correspondence between the neural responses of the two species. We thus demonstrate the feasibility of using MEG in the macaque monkey and provide a non-human primate model for examining the relationship between external evoked magnetic fields and their underlying neural sources

    Molecular understanding of the suppression of new-particle formation by isoprene

    Get PDF
    Nucleation of atmospheric vapours produces more than half of global cloud condensation nuclei and so has an important influence on climate. Recent studies show that monoterpene (C10H16) oxidation yields highly oxygenated products that can nucleate with or without sulfuric acid. Monoterpenes are emitted mainly by trees, frequently together with isoprene (C5H8), which has the highest global emission of all organic vapours. Previous studies have shown that isoprene suppresses new-particle formation from monoterpenes, but the cause of this suppression is under debate. Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we show that isoprene reduces the yield of highly oxygenated dimers with 19 or 20 carbon atoms - which drive particle nucleation and early growth - while increasing the production of dimers with 14 or 15 carbon atoms. The dimers (termed C-20 and C-15, respectively) are produced by termination reactions between pairs of peroxy radicals (RO2 center dot) arising from monoterpenes or isoprene. Compared with pure monoterpene conditions, isoprene reduces nucleation rates at 1.7 nm (depending on the isoprene = monoterpene ratio) and approximately halves particle growth rates between 1.3 and 3.2 nm. However, above 3.2 nm, C-15 dimers contribute to secondary organic aerosol, and the growth rates are unaffected by isoprene. We further show that increased hydroxyl radical (OH center dot) reduces particle formation in our chemical system rather than enhances it as previously proposed, since it increases isoprene-derived RO2 center dot radicals that reduce C-20 formation. RO2 center dot termination emerges as the critical step that determines the highly oxygenated organic molecule (HOM) distribution and the corresponding nucleation capability. Species that reduce the C-20 yield, such as NO, HO2 and as we show isoprene, can thus effectively reduce biogenic nucleation and early growth. Therefore the formation rate of organic aerosol in a particular region of the atmosphere under study will vary according to the precise ambient conditions.Peer reviewe

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG
    corecore