4,301 research outputs found

    Heavy fermion superconductivity and magnetic order in non-centrosymmetric CePt3SiCePt_3Si

    Full text link
    CePt3Si\rm CePt_3Si is a novel heavy fermion superconductor, crystallising in the CePt3B\rm CePt_3B structure as a tetragonally distorted low symmetry variant of the AuCu3\rm AuCu_3 structure type. CePt3Si\rm CePt_3Si exhibits antiferromagnetic order at TN≈2.2T_N \approx 2.2 K and enters into a heavy fermion superconducting state at Tc≈0.75T_c \approx 0.75 K. Large values of Hc2′≈−8.5H_{c2}' \approx -8.5 T/K and Hc2(0)≈5H_{c2}(0) \approx 5 T refer to heavy quasiparticles forming Cooper pairs. Hitherto, CePt3Si\rm CePt_3Si is the first heavy fermion superconductor without a center of symmetry.Comment: 4 pages, 4 figure

    Size effect on magnetism of Fe thin films in Fe/Ir superlattices

    Full text link
    In ferromagnetic thin films, the Curie temperature variation with the thickness is always considered as continuous when the thickness is varied from nn to n+1n+1 atomic planes. We show that it is not the case for Fe in Fe/Ir superlattices. For an integer number of atomic planes, a unique magnetic transition is observed by susceptibility measurements, whereas two magnetic transitions are observed for fractional numbers of planes. This behavior is attributed to successive transitions of areas with nn and n+1n+1 atomic planes, for which the TcT_c's are not the same. Indeed, the magnetic correlation length is presumably shorter than the average size of the terraces. Monte carlo simulations are performed to support this explanation.Comment: LaTeX file with Revtex, 5 pages, 5 eps figures, to appear in Phys. Rev. Let

    Towards an optimal design of target for tsetse control: comparisons of novel targets for the control of palpalis group tsetse in West Africa

    Get PDF
    Background: Tsetse flies of the Palpalis group are the main vectors of sleeping sickness in Africa. Insecticide impregnated targets are one of the most effective tools for control. However, the cost of these devices still represents a constraint to their wider use. The objective was therefore to improve the cost effectiveness of currently used devices. Methodology/Principal Findings: Experiments were performed on three tsetse species, namely Glossina palpalis gambiensis and G. tachinoides in Burkina Faso and G. p. palpalis in Côte d'Ivoire. The 1×1 m2 black blue black target commonly used in W. Africa was used as the standard, and effects of changes in target size, shape, and the use of netting instead of black cloth were measured. Regarding overall target shape, we observed that horizontal targets (i.e. wider than they were high) killed 1.6-5x more G. p. gambiensis and G. tachinoides than vertical ones (i.e. higher than they were wide) (P<0.001). For the three tsetse species including G. p. palpalis, catches were highly correlated with the size of the target. However, beyond the size of 0.75 m, there was no increase in catches. Replacing the black cloth of the target by netting was the most cost efficient for all three species. Conclusion/Significance: Reducing the size of the current 1*1 m black-blue-black target to horizontal designs of around 50 cm and replacing black cloth by netting will improve cost effectiveness six-fold for both G. p. gambiensis and G. tachinoides. Studying the visual responses of tsetse to different designs of target has allowed us to design more cost-effective devices for the effective control of sleeping sickness and animal trypanosomiasis in Africa

    On centralizer algebras for spin representations

    Full text link
    We give a presentation of the centralizer algebras for tensor products of spinor representations of quantum groups via generators and relations. In the even-dimensional case, this can be described in terms of non-standard q-deformations of orthogonal Lie algebras; in the odd-dimensional case only a certain subalgebra will appear. In the classical case q = 1 the relations boil down to Lie algebra relations

    Perceived Overqualification and Collectivism Orientation: Implications for Work and Nonwork Outcomes

    Get PDF
    This is the author accepted manuscript. The final version is available from Sage Publications via the DOI in this record.In this research, we simultaneously examined the relative applicability of person-environment fit and relative deprivation theories in explaining the interactive effects of perceived overqualification and collectivism cultural orientations on positive outcomes. We hypothesized that the negative (positive) influence of perceived overqualification on person-environment fit (relative deprivation) will be weaker among employees with high collectivism cultural orientation. We also examined which of these two different mechanisms would explain the hypothesized interactive effects in predicting these workers’ citizenship behavior, personal initiative, work engagement, and life satisfaction. We tested our hypotheses in two studies. In Study 1, we recruited professional staff (n = 852) and their coworkers (n = 301) from 95 universities and tested our hypotheses in a matched sample of 190 employees and their peers. The moderated mediation results supported the idea of person-environment fit (but not relative deprivation) as the mechanism explaining why collectivism orientations assuaged the negative effects of perceived overqualification on these outcomes. We constructively replicated these results in Study 2, which was a time-lagged design with full-time employees (n = 224). Study 2’s results further supported the robustness of our model by testing alternative moderators, mediators, and outcomes.Society of Industrial-Organizational PsychologyUniversity of Western AustraliaAustralian Research Counci

    Seebeck Effect in Magnetic Tunnel Junctions

    Full text link
    Creating temperature gradients in magnetic nanostructures has resulted in a new research direction, i.e., the combination of magneto- and thermoelectric effects. Here, we demonstrate the observation of one important effect of this class: the magneto-Seebeck effect. It is observed when a magnetic configuration changes the charge based Seebeck coefficient. In particular, the Seebeck coefficient changes during the transition from a parallel to an antiparallel magnetic configuration in a tunnel junction. In that respect, it is the analog to the tunneling magnetoresistance. The Seebeck coefficients in parallel and antiparallel configuration are in the order of the voltages known from the charge-Seebeck effect. The size and sign of the effect can be controlled by the composition of the electrodes' atomic layers adjacent to the barrier and the temperature. Experimentally, we realized 8.8 % magneto-Seebeck effect, which results from a voltage change of about -8.7 {\mu}V/K from the antiparallel to the parallel direction close to the predicted value of -12.1 {\mu}V/K.Comment: 16 pages, 7 figures, 2 table
    • …
    corecore