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Background
Cylindrical Bessel functions and spherical Bessel functions are widely used in mathemat-
ics (Watson 1966), physics (Gray and Mathews 1895) and engineering science (McLa-
chlan 1941) to analyze boundary value problems in cylindrical or spherical geometries. 
Using integral transform techniques or eigenfunction expansions, a second order dif-
ferential equation remains that can be transformed into a cylindrical Bessel differential 
equation or a spherical Bessel differential equation. The general solution can be given 
in terms of a linear combination of cylindrical Bessel functions J and Y or, in the three-
dimensional case, in terms of a linear combination of spherical Bessel functions j and y. 
These eigenfunctions are orthogonal to each other and the corresponding eigenvalues 
can be found as the zeros of a specific cross product consisting of cylindrical and spheri-
cal Bessel functions, respectively. Furthermore, to calculate expansion coefficients of an 
eigenfunction expansion, it is helpful to evaluate Lommel integrals, which contain the 
eigenfunctions and a power function.

Abstract 

The cylindrical Bessel differential equation and the spherical Bessel differen-
tial equation in the interval R ≤ r ≤ γ R with Neumann boundary conditions are 
considered. The eigenfunctions are linear combinations of the Bessel function 
�n,ν(r) = Y ′ν(�n,ν)Jν(�n,ν r/R)− J′ν(�n,ν)Yν(�n,ν r/R) or linear combinations of the 
spherical Bessel functions ψm,ν(r) = y′ν(�m,ν)jν(�m,ν r/R)− j′ν(�m,ν)yν(�m,ν r/R). The 
orthogonality relations with analytical expressions for the normalization constant are 
given. Explicit expressions for the Lommel integrals in terms of Lommel functions 
are derived. The cross product zeros Y ′ν(�n,ν)J

′
ν(γ �n,ν)− J′ν(�n,ν)Y

′
ν(γ �n,ν) = 0 and 

y′ν(�m,ν)j
′
ν(γ �m,ν)− j′ν(�m,ν)y

′
ν(γ �m,ν) = 0 are considered in the complex plane for 

real as well as complex values of the index ν and approximations for the exceptional 
zero �1,ν are obtained. A numerical scheme based on the discretization of the two-
dimensional and three-dimensional Laplace operator with Neumann boundary condi-
tions is presented. Explicit representations of the radial part of the Laplace operator in 
form of a tridiagonal matrix allow the simple computation of the cross product zeros.
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Cylindrical Bessel functions and their properties are well described, as for example in 
the textbook of Watson (1966) where orthogonality relations and Lommel integrals are 
analyzed in detail. However, for a linear combination of spherical Bessel functions such 
orthogonality relations or Lommel integrals are not given explicitly, although they occur 
in many problems of diffusion or heat conduction in spherical geometries (for a review, 
see Carslaw and Jaeger 1959). This is mainly due to the fact that spherical Bessel func-
tions with an integer index can be expressed in terms of trigonometric functions, and, 
thus, the remaining orthogonality relations and Lommel integrals can be given explic-
itly. Yet, the case for arbitrary complex-valued indices of cylindrical and spherical Bes-
sel functions has not been analyzed and there are no generally valid expressions for the 
orthogonality relations and the Lommel integral.

Moreover, the cross product zeros of Bessel functions that provide the eigenvalues in 
the case of an eigenfunction expansion are highly relevant for inverse eigenvalue prob-
lems and go back to the famous question ”Can one hear the shape of a drum?” asked by 
Kac (1966). Cross product zeros were first analyzed by McMahon (1894) who derived 
an expression for large zeros. In addition, Cochran examined the asymptotic nature and 
analyticity of cross product Bessel functions (Cochran 1964, 1966a, b). Recurrence rela-
tions for the Bessel function cross products are given by Goodwin (1949). But, until now, 
the cross products of cylindrical Bessel functions or spherical Bessel functions for an 
arbitrary complex index of the Bessel function have not yet been discussed in depth, 
although its application in physics becomes increasingly important, e.g. in optics or 
quantum mechanics, where non-hermitean potentials are involved.

In this work, the cylindrical and spherical Bessel differential equation, respectively, 
are considered in the radial interval R ≤ r ≤ γR where γ ≥ 1. In "Preliminary facts", we 
investigate the orthogonality relation between eigenfunctions and the Lommel integral 
for a linear combination of cylindrical Bessel functions J and Y. In an analogous pro-
cedure, general expressions for the orthogonality relation and Lommel integral for a 
linear combination of spherical Bessel functions j and y are derived by using similarity 
relations between cylindrical and spherical Bessel functions. In "Cylindrical Bessel func-
tions", the cylindrical Bessel differential equation R2

[ν2/r2 −�r]�n,ν(r) = �
2
n,ν�n,ν(r) 

is considered for Neumann boundary conditions on both ends of the radial inter-
val. Explicit expressions for the orthogonality relation and Lommel integral of 
the according eigenfunctions �n,ν(r) = Y ′

ν(�n,ν)Jν(�n,νr/R)− J ′ν(�n,ν)Yν(�n,νr/R) 
are given where the eigenvalues �n,ν are determined by the cross product zeros 
Y ′
ν(�n,ν)J

′
ν(γ �n,ν)− J ′ν(�n,ν)Y

′
ν(γ �n,ν) = 0. To analyze cross product zeros for a com-

plex valued index ν, the function fν(�) = Y ′
ν(�)J

′
ν(γ �)− J ′ν(�)Y

′
ν(γ �) is considered in the 

complex �-plane and symmetry relations of the function fν(�) are provided. The first 
exceptional zero is approximated by a Taylor expansion of the function fν(�). A dis-
cretization scheme for the radial part of two-dimensional Laplace-operator with Neu-
mann boundary conditions is proposed and given in terms of a tridiagonal matrix. 
Consequently, the cross-product zeros can be obtained by solving a simple matrix 
eigenvalue problem. In "Spherical Bessel functions", similar results are derived for the 
spherical Bessel differential equation R2

[ν[ν + 1]/r2 −�r]ψm,ν(r) = �
2
m,νψm,ν(r) and 

the corresponding eigenfunctions ψm,ν(r) = y′ν(�m,ν)jν(�m,νr/R)− j′ν(�m,ν)yν(�m,νr/R).  
In "Numerical implementation", numerical algorithms are provided that correctly 
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implement discretization schemes for the radial part of the two-dimensional and 
three-dimensional Laplace-operator and that allow a direct determination of cross 
product zeros for both cylindrical and spherical Bessel functions. Applications to the 
diffusion process around dipole fields are described in "Application to the diffusion pro-
cess around dipole fields". A summary of the results and conclusions are given in "Sum-
mary and conclusions".

Preliminary facts
Cylindrical Bessel functions

For a linear combination of Bessel functions

the following orthogonality relation holds [see Eq. (11.4.2) on page 485 in Abramowitz 
and Stegun (1972) or Eq. (11) on page 135 in Watson (1966) or Eqs. (19) and (20) on 
page 97 in McLachlan (1941)]:

where the index ν denotes the order of the cylindrical Bessel function and n numerates 
the eigenvalues �n,ν which obey the boundary conditions

The normalization constant is

The Lommel integral involving the linear combination of Bessel functions and a power 
function is given in the following form:

which can be given in terms of the function �n,ν(z) and its derivative at the boundaries 
[see Eq. (5) on page 350 in paragraph 10.74 in Watson (1966) in combination with Eq. 
(3) on page 83 in paragraph 3.9 in Watson (1966)]. It can be evaluated using the Lommel 
functions

(1)�ν(z) = AJν(z)+ BYν(z)

(2)

b
∫

a

dt t �n,ν(�n,νt)�n′,ν(�n′,νt) = Nn,νδnn′

(3)� ′

n,ν(�n,νa) = α�n,ν(�n,νa)

(4)� ′

n,ν(�n,νb) = β�n,ν(�n,νb) .

(5)Nn,ν =

{

t2

2

[

1−
ν2

�2n,νt
2

]

[�n,ν(�n,νt)]
2
+

t2

2

[

� ′

n,ν(�n,νt)
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}b
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.

(6)

b
∫

a

dz zκ�n,ν(z) =
{

z
[

�n,ν(z)S
′

κ ,ν(z)−� ′

n,ν(z)Sκ ,ν(z)
]}b
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×
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(
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(
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Yν(z)

]
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The Lommel functions obey the following recurrence relations (Watson 1966; Babister 
1967; Ziener and Schlemmer 2013):

For the special cases κ = 1 and ν = 2m as well as κ = 0 and ν = 2m+ 1, the Lommel 
functions can be written in terms of Neumann polynomials Om:

where

[see page 274 in Watson (1966)]. In a similar way the special cases κ = −1 and ν = 2m as 
well as κ = 0 and ν = 2m+ 1 can be written in terms of Schläfli polynomials Sm as:

where

(8)sκ ,ν(z) =
zκ+1

[κ + 1]2 − ν2
1F2

(

1;
κ − ν + 3

2
,
κ + ν + 3

2
;−

z2

4

)

.

(9)Sκ+2,ν(z) = zκ+1
−

[

[κ + 1]2 − ν2
]

Sκ ,ν(z)

(10)S′κ ,ν(z)+
ν

z
Sκ ,ν(z) = [κ + ν − 1]Sκ−1,ν−1(z)

(11)S′κ ,ν(z)−
ν

z
Sκ ,ν(z) = [κ − ν − 1]Sκ−1,ν+1(z) .

(12)S1,2m(z) = zO2m(z)

(13)S0,2m+1(z) =
z

2m+ 1
O2m+1(z)

(14)O0(z) =
1

z

(15)O1(z) =
1

z2

(16)
O2(z) =

1

z
+

4

z3

...

(17)S−1,2m(z) =
1

4m
S2m(z)

(18)S0,2m+1(z) =
1

2
S2m+1(z)

(19)S0(z) = 0

(20)S1(z) =
2

z
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[see Eq. (2) on page 285 and on page 286 in paragraph 9.3 in Watson (1966)]. The excep-
tional case S−1,0(z) is treated in Watson (1966) and Glasser (2010).

The most general case in which Lommel functions Sκ ,ν can be expressed in terms of 
power functions occurs when the sum of the indices κ + ν = 2p+ 1 is an odd integer 
[see Eq. (8) in section 10.74 on page 351 in Watson (1966)]:

where the Gegenbauer polynomials An,ν are defined as [see Eq. (1) in section 9.2 on page 
283 in Watson (1966)]:

From this definition it is easy to obtain the relation

and, further, to give the following explicit expressions:

The term for A0,ν(z) given in Eq. (25) is in agreement with the results of Watson [see 
Eq. (7) in section 9.2 on page 283 in Watson (1966)]. Other special cases of the Lommel 
functions can be found in section 3.10.2 on pages 111–113 in Magnus et al. (1966).

Spherical Bessel functions

To obtain similar relations for spherical Bessel functions, it is advantageous to consider 
the linear combination

and to use the following general relation between cylindrical Bessel functions and spher-
ical Bessel functions:

(21)
S2(z) =

4

z2

...

(22)Sγ ,2p+1−γ (z) =
p!

21−γ Ŵ(p+ 1− γ )

zγ

2p+ 1− γ
A2p,1−γ (z)

(23)An,ν(z) = 2ν+n ν + n

zn+1

⌊
n
2 ⌋

∑

m=0

Ŵ(ν + n−m)

m!

[ z

2

]2m
.

(24)A2p,1−γ (z) = zA2p+1,−γ (z) ,

(25)A0,ν(z) = Ŵ(ν + 1)
2ν

z

(26)A1,ν(z) = Ŵ(ν + 2)
2ν+1

z2

(27)
A2,ν(z) = Ŵ(ν + 3)

4 + 4ν + z2

ν + 1

2ν

z3

...

(28)ψµ(z) = Ajµ(z)+ Byµ(z)

(29)�
µ+ 1

2
(z) =

√

2z

π
ψµ(z)
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Introducing the relations (29) and (30) into the orthogonality relation (2) of cylindrical 
Bessel functions, the following orthogonality relation for spherical Bessel functions can 
be obtained:

where the same notation as in the case of cylindrical Bessel functions is used, i.e. the 
index µ denotes the order of the spherical Bessel functions and the index m enumerates 
the eigenvalues �m,µ which obey the boundary condition

The corresponding normalization constant is given by

The Lommel integral can be evaluated by using Eqs. (29) and (30):

Cylindrical Bessel functions
Cross‑product zeros

The cylindrical Bessel differential equation

with the radial part of two-dimensional Laplace operator �r = ∂rr + r−1∂r inside an 
annular ring R ≤ r ≤ γR is considered. Reflecting boundary conditions at r = R and 
r = γR are assumed:

(30)� ′

µ+ 1
2

(z) =
1

√
2πz

[

ψµ(z)+ 2zψ ′

µ(z)
]

.

(31)

b
∫

a

dt t2ψm,µ(�m,µt)ψm′,µ(�m′,µt) = Nm,µδmm′ ,

(32)ψ ′
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(33)ψ ′
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+
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.
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b
∫
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√
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1
2

(z)−
1

2
S
κ− 1

2 ,µ+
1
2
(z)

]

−z
√
zψ ′
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2
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∣

∣

∣
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The respective eigenfunctions are given by

which obviously obey the reflecting boundary condition at r = R.
Reflecting boundary conditions at the outer boundary at r = γR lead to the conditions

that have to be evaluated numerically. The function fν(�) possesses the following sym-
metry properties

that translates to the properties of eigenvalues

and eigenfunctions

For real values of the Bessel function index ν the function fν(�) always takes real val-
ues and the eigenvalues �n,ν are real. The respective eigenvalues �n,ν are tabulated (Bauer 
1964; Bridge and Angrist 1962; Truell 1943) or they can be found by using numerical 
routines (Sorolla et al. 2013) and empirical approximations (Laslett and Lewish 1962). 
The computer algebra system MATHEMATICA® (Wolfram Research, Inc., Champaign, 
IL, USA, Wolfram 1999) provides the command

for numerical computation of the eigenvalues. However, these standard numerical rou-
tines based on search algorithms for zeros can run into problems for inappropriate initial 
conditions of the algorithm. Consequently eigenvalues can be missed or found multiple. 
Furthermore, for complex values of the index of the Bessel functions, these numerical rou-
tines often fail. To circumvent these problems, an algorithm based on solving the corre-
sponding original eigenvalue problem will be introduced in "Numerical implementation".

(38)
∂

∂r
�n,ν(r)

∣

∣

∣

∣

r=γR

= 0 .

(39)�n,ν(r) = Y ′

ν(�n,ν)Jν

(

�n,ν
r

R

)

− J ′ν(�n,ν)Yν

(

�n,ν
r

R

)

,

(40)fν(�n,ν) = 0

(41)fν(�) = Y ′

ν(�)J
′

ν(γ �)− J ′ν(�)Y
′

ν(γ �) ,

(42)fν(+�) = fν(−�)

(43)f+ν(�) = f−ν(�)

(44)fν∗(�) = f ∗ν (�
∗)

(45)�n,+ν = �n,−ν

(46)�n,ν∗ = �
∗

n,ν

(47)�n,+ν(r) = �n,−ν(r)

(48)�n,ν∗(r) = �∗

n,ν(r) .

(49)�n,ν = BesselJPrimeYPrimeJPrimeYPrimeZeros[ν, γ ,n][[n]]
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For complex values of the Bessel function index ν, however, it is helpful to consider the 
complex valued function fν(�) in the complex �-plane as shown in Fig. 1. Similar consid-
erations are performed in Figure 2 in Ziener et al. (2012).

For small values of the parameter �, the function fν(�) given in Eq. (41) can be approxi-
mated by

and the first zero of this approximated function is

In the limit γ → 1, the first eigenvalue tends to

In addition, for small values of the index ν, the first eigenvalue can be obtained from a 
Taylor expansion:

In the same limit, Gottlieb derived [see Eq. (A.5) in Gottlieb (1985)]:

(50)fν(�) ≈
ν
[

γ 2ν
− 1

]

π�2γ 1+ν
+

[

ν2 + ν − 2
][

1− γ 2
][

1+ γ 2ν
]

− 2ν
[

γ 2ν
− γ 2

]

4π
[

ν2 − 1
]

γ 1+ν

(51)
�1,ν ≈

√

4ν
[

1− ν2
][

γ 2ν − 1
]

[

ν2 + ν − 2
][

1− γ 2
][

1+ γ 2ν
]

− 2ν
[

γ 2ν − γ 2
] .

(52)lim
γ→1

�1,ν = ν .

(53)�1,ν ≈ ν

√

2 ln(γ )

γ 2 − 1
.

(54)�1,ν ≈ ν

[

1−
1

2
[γ − 1] +

7

24
[γ − 1]2

]

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

Im
(λ

)

Re(λ)

ν=2   γ=5  Re(f (λ))=0  Im(f (λ))=0

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

Im
(λ

)

Re(λ)

ν=2+i  γ=5  Re(f (λ))=0 Im(f (λ))=0

λ1,ν λ2,ν λ3,ν λ4,ν

ν ν ν ν

a b λ1,ν λ2,ν λ3,ν λ4,ν

Fig. 1  Contour plot of the function fν(�) in the complex �-plane. a On the blue lines, the real part of the func-
tion fν(�) vanishes, i.e. Re(fν(�)) = 0, and, on the red lines, the imaginary part of the function fν(�) vanishes, 
i.e. Im(fν(�)) = 0. The eigenvalues are located at the intersection points of the blue lines and red lines. For a 
real index (shown for ν = 2 and γ = 5 as an example), all intersection points are located on the real axis. b For 
a complex index (examplarily for ν = 2+ i and γ = 5), the contour plots become more sophisticated and the 
intersection points are displaced into the complex plane.
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and Grebenkov obtained [see Eq. (30) in Grebenkov (2007)]:

Additionally, Buchholz found [see Eq. (10) on page 363 in section 3.2. in Buchholz (1949) 
or Cochran (1964)]:

A comparison of the different approximations and the exact numerical solution is shown 
in Fig. 2.

For n ≥ 2, the eigenvalues can be found with the approximation of McMahon (1894), 
see also 9.5.28 and 9.5.31 on page 374 of Abramowitz and Stegun (1972):

Please note, that in Abramowitz and Stegun (1972) the exceptional zero is taken into 
account. Hence, there is a shift in the labeling of the zeros. The correct labeling of the 
zeros for example is given in 10.21.50 and 10.21.52 of Olver et al. (2010). The approxi-
mation coincides with the result of Grebenkov given in Eq. (31) in Grebenkov (2007). 
Another approximation for n ≥ 2 was found by Buchholz [see Eq. (4) on page 364 in 
section 3.3. in Buchholz (1949)]:

(55)�1,ν ≈ ν

√

2− γ +
5

6
[1− γ ]2 +

2

3
[1− γ ]3 −

ν2 − 16

30
[1− γ ]4 .

(56)
�1,ν ≈

ν

√
γ

[

1+ [γ−1]2

12γ +
[8ν2−3][γ−1]4

480γ 2 −
[144ν2−103][γ−1]6

120960γ 3

] .

(57)

�n,ν ≈π
n− 1

γ − 1
+

4ν2 + 3

8πγ

γ − 1

n− 1

+
[γ 2

+ γ + 1][16ν4 + 184ν2 − 63] − 6γ [4ν2 + 3]2

384π3γ 3

[

γ − 1

n− 1

]3

.

(58)
�n,ν ≈

n− 1

γ − 1

π

1− 4ν2+3
8γπ2

[

γ−1
n−1

]2
+

96ν4−176ν2+198
256γ 2π4

[

γ−1
n−1

]4
.

Fig. 2  The exact numerical solution of the first (n = 1) zero �1,ν, exemplary for ν = 2 [black solid line obtained 
from Eq. (40)] in comparison with approximate solutions (red solid line obtained from Eq. (51) and blue 
solid line obtained from Eq. (53) for small values of the index ν) and results from Grebenkov [green solid line 
obtained from Eq. (55)], Gottlieb [green dashed line obtained from Eq. (54)], and Buchholz [green dotted line 
obtained from Eq. (56)].
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Discretization

For complex values of the index ν, it is cumbersome to find the respective eigenvalues in 
the complex plane. To avoid a global search, a simple numerical procedure in terms of a 
discretization scheme is introduced. For this, the interval R ≤ r ≤ γR is divided into p 
intervals with length h in the following way:

As shown in Ziener et al. (2009, 2015), the radial part of the two-dimensional Laplace 
operator can be written in the form

Fractional indices are meant as rj 12 = rj+ 1
2
= R+

[

j − 1
2

]

h and rp−1 1
2
= R+

[

p−
5
2

]

h. 
Additionally, the main diagonal of this discretized radial part of the Laplace operator is 
given by −2/h2 except for the first and the last row. Furthermore, the sum of all elements 
in each row must vanish. Thus, the discretized form of the Bessel differential equation 
(36) can be expressed as an eigenvalue equation:

where the eigenvector

contains the values of the discretized eigenfunction �n,ν(rj).

Orthogonality

Due to Abel’s identity of the Wronski-determinant, the eigenfunctions take the value

at the inner boundary at r = R. At the outer boundary at r = γR, the eigenfunctions can 
be evaluated using the Wronski-determinant (63) and the eigenvalue equation (41):

(59)rj = R+ [j − 1]h for j = 1, . . . , p and h = R
γ − 1

p− 1
.

(60)�̂r =
1
h2



































−2
r
1 1
2

r1
+ 2

r
1 1
2

r1

+

r
1 1
2

r2
− 2 r2

r2
+

r
2 1
2

r2

+

r
2 1
2

r3
− 2 r3

r3
+

r
3 1
2

r3
. . .

. . .
. . .

+

r
p−2 1

2
rp−2

− 2
rp−2

rp−2
+

r
p−1 1

2
rp−2

+

r
p−1 1

2
rp−1

− 2
rp−1

rp−1
+

r
p− 1

2
rp−1

+ 2
r
p− 1

2
rp

− 2
r
p− 1

2
rp



































.

(61)

[

ν2diag

(

1

r21
, . . . ,

1

r2p

)

− �̂r

]

�̂n,ν =
�
2
n,ν

R2
�̂n,ν

(62)�̂n,ν =
(

�n,ν(r1), . . . ,�n,ν(rp)
)T

(63)�n,ν(R) =
2

π�n,ν

(64)�n,ν(γR) = Y ′

ν(�n,ν)Jν(γ �n,ν)− J ′ν(�n,ν)Yν(γ �n,ν)

(65)
=

2

πγ �n,ν

J ′ν(�n,ν)

J ′ν(γ �n,ν)
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The orthogonality relation of the eigenfunctions (39) can be obtained from the general 
expressions (2) and (5) by replacing the eigenfunctions with the expressions from Eqs. 
(63) and (64):

Lommel integral

Applying eigenfunction �n,ν(r) from Eq. (39) to the general Lommel integral in Eq. (6), 
we arrive at

where Eqs. (63) and (64) were used. The special case α = 1 and ν = 0 can be evaluated using 
the relation Eq. (12) with the respective Neumann polynomial given in Eq. (14). Since the cor-
responding Lommel function takes the constant value S1,0(z) = 1, this special case unfolds as

i.e. the constant function 1 and the function �n,0(r) are orthogonal in agreement with 
Thambynayagam (2011) (chapter  2.5, page 36). This result can be generalized by inte-
grating the original cylindrical Bessel differential equation (36):

Spherical Bessel functions
Cross‑product zeros

The spherical Bessel differential equation

with the radial part of the three-dimension Laplace operator �r = ∂rr + 2r−1∂r inside a 
spherical shell R ≤ r ≤ γR is considered. Reflecting boundary conditions at r = R and 
r = γR are assumed:

(66)=
2

πγ �n,ν

Y ′
ν(�n,ν)

Y ′
ν(γ �n,ν)

.

(67)
1

R2

γR
∫

R

dr r�n,ν(r)�n′,ν(r) = Nn,νδnn′

(68)Nn,ν =
2

π2�2n,ν

[

1−
ν2

γ 2�2n,ν

][

J ′ν(�n,ν)

J ′ν(γ �n,ν)

]2

−
2

π2�2n,ν

[

1−
ν2

�2n,ν

]

.

(69)
1

Rα+1

γR
∫

R

dr rα�n,ν(r) =
2

π�α+1
n,ν

[

J ′ν(�n,ν)

J ′ν(γ �n,ν)
S′α,ν(γ �n,ν)− S′α,ν(�n,ν)

]

,

(70)

γR
∫

R

dr r�n,0(r) = 0 ,

(71)

γR
∫

R

dr r

[

ν2

r2
−

�
2
n,ν

R2

]

�n,ν(r) = 0 .

(72)

[

ν[ν + 1]

r2
−�r

]

ψm,ν(r) =
�
2
m,ν

R2
ψm,ν(r)
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The respective eigenfunctions are given by

which already fulfill the reflecting boundary condition at r = R.
The reflecting boundary conditions at the outer boundary at r = γR lead to an equa-

tion for the determination of the eigenvalues:

For real values of the Bessel function index ν the function gν(�) always takes real values 
and the eigenvalues �m,ν are real. For complex values of the Bessel function index ν it is 
advantageous to consider the complex valued function gν(�) in the complex �-plane as 
visualized in Fig. 3. The function gν(�) possesses similar symmetry properties as in the 
two-dimensional case:

(73)
∂

∂r
ψm,ν(r)

∣

∣

∣

∣

r=R

= 0

(74)
∂

∂r
ψm,ν(r)

∣

∣

∣

∣

r=γR

= 0 .

(75)ψm,ν(r) = y′ν(�m,ν)jν

(

�m,ν
r

R

)

− j′ν(�m,ν)yν

(

�m,ν
r

R

)

,

(76)gν(�m,ν) = 0 where

(77)gν(�) = y′ν(�)j
′

ν(γ �)− j′ν(�)y
′

ν(γ �) .

(78)gν(+�) = −gν(−�)

(79)g
+ν− 1

2
(�) = g

−ν− 1
2
(�)

(80)gν∗(�) = g∗ν (�
∗) .

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

Im
(λ

)

Re(λ)

ν=2   γ=5   Re(g (λ))=0   Im(g (λ))=0

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

Im
(λ

)

Re(λ)

ν=2+i  γ=5  Re(g (λ))=0  Im(g (λ))=0ν ν ν ν

a b λ1,ν λ2,ν λ3,ν λ4,νλ1,ν λ2,ν λ3,ν λ4,ν

Fig. 3  Contour plot of the function gν(�) in the complex �-plane. a As in Fig. 1, the real and the imaginary 
part of the function gν(�) vanish on the blue lines and red lines, respectively, and the eigenvalues can be 
found at the intersection points of blue and red lines. For a real index (for ν = 2 and γ = 5 as an example), all 
intersection points are located on the real axis. b For a complex index (exemplarily shown for ν = 2+ i and 
γ = 5), the geometry of the contour plots appears again more complicated as for real indices.
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This translates to the symmetry properties to eigenvalues

and eigenfunctions

For small values of the parameter �, the function gν(�) given in Eq. (77) can be approxi-
mated by

and, thus, the first eigenvalue can be found at

In the limit γ → 1, the first eigenvalue tends to

For small values of the index ν, the approximate value of first eigenvalue from Eq. (87) 
can be approximated further through a Taylor expansion:

In the same limit for small values of the parameter γ, Grebenkov found [see Eq. (34) in 
Grebenkov (2007)]:

and Gottlieb obtained [see Eq. (2.14) in Gottlieb (1985) or Eq. (A.10) in Gottlieb (1985)]:

(81)�m,+ν− 1
2
= �m,−ν− 1

2

(82)�m,ν∗ = �
∗

m,ν

(83)ψm,+ν− 1
2
(r) = ψm,−ν− 1

2
(r)

(84)ψm,ν∗(r) = ψ∗

m,ν(r) .

(85)gν(�) =
ν

�3

ν + 1

2ν + 1

γ 2ν+1
− 1

γ 2+ν

(86)+

[

2ν3 + 5ν2 + ν − 2
][

1− γ 2ν+3
]

+ νγ 2
[

2ν2 + ν − 3
][

γ 2ν−1
− 1

]

2�[2ν + 1][4ν2 + 4ν − 3]γ 2+ν

(87)�1,ν ≈

√

2ν[ν + 1]
[

4ν2 + 4ν − 3
][

1− γ 2ν+1
]

[

2ν3 + 5ν2 + ν − 2
][

1− γ 2ν+3
]

+ νγ 2
[

2ν2 + ν − 3
][

γ 2ν−1 − 1
] .

(88)lim
γ→1

�1,ν =

√

ν[1+ ν] .

(89)�1,ν ≈

√

3ν

1+ γ + γ 2
.

(90)

�1,ν ≈

√

ν[1+ ν]

√

2− γ +
2

3
[1− γ ]2 +

1

3
[1− γ ]3 −

3ν[1+ ν] − 10

90
[1− γ ]4

(91)

�1,ν ≈

√

ν[1+ ν]

[

1−
1

2
[γ − 1] +

5

24
[γ − 1]

2
−

1

16
[γ − 1]

3

+
5− 32ν[ν + 1]

1920
[γ − 1]

4

]

.



Page 14 of 26Ziener et al. SpringerPlus  (2015) 4:390 

A comparison of the different approximations and the exact numerical solution is shown 
in Fig. 4.

For m ≥ 2, we find with the approximation of McMahon (1894):

that is in agreement with Eq. (36) in Grebenkov (2007).

Discretization

In analogy to the two-dimensional case, the radial interval R ≤ r ≤ γR can be discre-
tized in the same form as given in Eq. (59):

As shown in Ziener et al. (2009), the radial part of the three-dimensional Laplace opera-
tor can be represented as

(92)�m,ν ≈ π
m− 1

γ − 1
+

ν2 + ν + 2

2πγ

γ − 1

m− 1

(93)rj = R+ [j − 1]h for j = 1, . . . , p and h = R
γ − 1

p− 1
.

(94)�̂r =
1

h2






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Fig. 4  Exact numerical solution of the first eigenvalue �1,ν of Eq. (76) for ν = 2 (shown in the black solid line) 
and comparison with approximate solutions [red solid line from Eq. (87) and blue solid line from Eq. (89)) and 
results from Grebenkov (green solid line obtained from Eq. (91)] and Gottlieb [green dashed line obtained from 
Eq. (91)].
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Thus, the discretized form of the spherical Bessel differential equation (72) can be writ-
ten in the form of the eigenvalue equation:

where the eigenvector

contains the values of the discretized eigenfunction ψm,ν(rj).

Orthogonality

Due to Abel’s identity of the Wronski-determinant, the eigenfunctions take the value

at the inner boundary at r = R. The value of the eigenfunction at the outer boundary at 
r = γR can be evaluated using the Wronski-determinant (97) and the eigenvalue equa-
tion (77):

The orthogonality relation of the eigenfunctions (75) can be obtained from the general 
expressions (31) and (34) by replacing the respective eigenfunctions with the expressions 
in Eqs. (97) and (99) as in the case of cylindrical Bessel functions:

Lommel integral

The Lommel integral can be obtained from the general expression given in Eq. (35), 
respecting the Neumann boundary conditions, the Wronski-determinant from Eq. (97) 
and expression (98):

(95)

[

ν[ν + 1]diag

(

1

r21
, . . . ,

1

r2p

)

− �̂r

]

ψ̂m,ν =
�
2
m,ν

R2
ψ̂m,ν

(96)ψ̂m,ν =
(

ψm,ν(r1), . . . ,ψm,ν(rp)
)T

(97)ψm,ν(R) =
1

�2m,ν

(98)ψm,ν(γR) = y′ν(�m,ν)jν(γ �m,ν)− j′ν(�m,ν)yν(γ �m,ν)

(99)=
1

γ 2�2m,ν

j′ν(�m,ν)

j′ν(γ �m,ν)

(100)=
1

γ 2�2m,ν

y′ν(�m,ν)

y′ν(γ �m,ν)
.

(101)
1

R3

γR
∫

R

dr r2ψm,ν(r)ψm′,ν(r) = Nm,νδmm′

(102)Nm,ν =
1

2γ �4m,ν

[

j′ν(�m,ν)

j′ν(γ �m,ν)

]2[

1−
ν[ν + 1]

γ 2�2m,ν

]

+
1

2�4m,ν

[

ν[ν + 1]

�2m,ν

− 1

]

.
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For α + ν = 2p+ 1, the Lommel functions can be expressed in terms of Gegenbauer 
polynomials as above [see Eq. (22)].

In analogy to Eq. (70), the special case for α = 2 and ν = 0 can be determined, since in 
this case the prefactors of the Lommel functions in Eq. (103) vanish:

Therefore, the functions 1 and ψm,0(r) are orthogonal. In analogy to the cylindrical case 
in Eq. (71) this result can be generalized by integrating the original spherical Bessel dif-
ferential equation (72)

Numerical implementation
Cylindrical Bessel functions

The discretization scheme provided for the radial part of the two-dimension Laplace 
operator with Neumann boundary conditions is implemented in the following algorithm:  

In lines 1 and 2, the length of the discretization interval h and the discretized radius 
according to the scheme (59) is computed. In lines 3–9, the discretized form of radial 
part of the two-dimensional Laplace operator given in Eq. (60) is implemented and, in 
line 10, the diagonal matrix ν2diag(1/r21 , . . . , 1/r

2
p) represents the part ν2/r2 of the origi-

nal cylindrical Bessel differential equation. Finally, in line 11, the eigenvalue equation 
(61) is solved and the eigenvalues are given in a list sorted in ascending order. The eigen-
value �n,ν can be obtained by the command 

(103)

1

Rα+1

γR
∫

R

dr rαψm,ν(r)

=
γ−

3
2

�

5
2+α
m,ν

j′ν(�m,ν)

j′ν(γ �m,ν)

[

γ �m,ν[α − ν − 2]S
α− 3

2 ,ν+
3
2
(γ �m,ν)+ νS

α− 1
2 ,ν+

1
2
(γ �m,ν)

]

−
1

�

5
2+α
m,ν

[

�m,ν[α − ν − 2]S
α− 3

2 ,ν+
3
2
(�m,ν)+ νS

α− 1
2 ,ν+

1
2
(�m,ν)

]

.

(104)

γR
∫

R

dr r2ψm,0(r) = 0 .

(105)

γR
∫

R

dr r2

[

ν[ν + 1]

r2
−

�
2
m,ν

R2

]

ψm,ν(r) = 0 .
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Spherical Bessel functions

In analogy to the implementation for cylindrical Bessel functions, the eigenvalues of the 
radial part of the three-dimensional discretization scheme according to Eq. (94) and (95) 
can be implemented as follows: 

Finally, the eigenvalue �m,ν of the matrix eigenvalue problem (95) can be obtained by 
the command 

Application to the diffusion process around dipole fields
To visualize the applicability of the results obtained in the previous sections, the fre-
quency autocorrelation function of diffusing spins with the local resonance frequency

is considered as an example. The function f (r) describes the shape of the local resonance 
frequency and δω its strength. The same analysis has already been performed in Ziener 
et al. (2008) for the diffusion between two concentric cylinders (two-dimensional case) 
and between two concentric spheres (three-dimensional case). The frequency autocorre-
lation function can be used to analyze magnetic resonance pulse sequences and to deter-
mine properties of red blood cells as shown in Ziener et al. (2010).

However, using the explicit expressions for the normalization and the Lommel inte-
gral for linear combinations of cylindrical or spherical Bessel functions, respectively, it is 
possible to obtain considerably simpler expressions as will be demonstrated below.

The frequency autocorrelation function for spins diffusing in the volume V is defined 
as (Ziener et al. 2006)

(106)ω(r) = δωf (r)

(107)K (t) = δω2

∫

d3r

∫

d3r0f (r)p(r, r0, t)f (r0)p(r0)

(108)=
δω2

V

∫

d3r

∫

d3r0f (r)p(r, r0, t)f (r0)
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where p(r, r0, t) is the probability of a spin to diffuse during the time span t from the 
position r0 to the position r and p(r0) = 1/V  is the probability of finding a spin at posi-
tion r0. This transition probability is a solution of the diffusion equation

where D is the diffusion coefficient inside the volume V in which the diffusion occurs 
(Bauer et al. 2005). The transition probability p(r, r0, t) can be expressed in terms of an 
eigenfunction expansion

with eigenvalues κl and eigenfunctions φl that fulfil the orthogonality condition

and are solutions of the eigenvalue equation

with R being the radius of the inner cylinder or the inner sphere, respectively. The 
eigenfunction

corresponds to the lowest eigenvalue

Cylinders

In the two-dimensional case, the diffusion occurs in the space between two concentric 
circles with radius R and γR:

The eigenfunctions of the eigenvalue equation (112) are

(109)
∂

∂t
p(r, r0, t) = D�p(r, r0, t)

(110)p(r, r0, t) =

∞
∑

κl≥0

e
−κ2l

Dt

R2 φl(r)φ
∗

l (r0) =
1

V
+

∞
∑

κl>0

e
−κ2l

Dt

R2 φl(r)φ
∗

l (r0)

(111)

∫

d3rφl(r)φ
∗

l′(r) = δll′

(112)�φl(r) = −
κ2l

R2
φl(r) ,

(113)φ0(r) =
1

√
V

(114)κ0 = 0 .

(115)V = πR2
[

γ 2
− 1

]

.

(116)φn,ν(r,φ) =
�n,ν(r)

R
√

Nn,ν

e+iνφ

√
2π

(117)n = +1, . . . ,+∞

(118)ν = −∞, . . . ,−1, 0,+1, . . . ,+∞ ,
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with the radial eigenfunctions �n,ν(r) given in Eq. (39) and the according nor-
malization constants Nn,ν given in Eq. (67) where the index ν takes the values 
ν = −∞, . . . ,−1, 0,+1, . . . ,+∞ and the index n lies in the range n = +1, . . . ,+∞. 
Using the symmetry relation of the radial eigenvalues in Eq. (45) and radial eigenfunc-
tions in Eq. (47), the propagator from Eq. (110) can finally be written in the form

In Fig. 5 the time evolution of this diffusion propagator is visualized.
Introducing the diffusion propagator and the shape-function of the two-dimensional 

dipole field

into the definition of the autocorrelation function given in Eq. (108), only the addend 
with the index ν = 2 remains and the autocorrelation function can finally be written in 
the form

with the expansion coefficients

A similar expression appears in Eq. (28) in Ziener et al. (2008) for the calculation of the 
expansion coefficients. The Lommel integral in Eq. (122) can be evaluated by using the 
general expression given in Eq. (69) with α = −1 and ν = 2. In this special case the Lom-
mel function can be expressed in terms of Schläfli polynomials [see Eq. (17) with m = 1 
and Eq. (21)]: S−1,2(z) = S2(z)/4 = 1/z2, and, thus S′

−1,2(z) = −2/z3. Thus, one obtains:

Finally, with the normalization constant given in Eq. (67), the expansion coefficient Fn 
can be written as

(119)

p(r,φ, r0,φ0, t) =
1

πR2
[

γ 2 − 1
]

+
1

2πR2

∞
∑

n=1

∞
∑

ν=0

e
−�

2
n,ν

Dt

R2

Nn,ν
�n,ν(r)�n,ν(r0)[2− δν0] cos(ν[φ − φ0]) .

(120)f (r,φ) =
R2

r2
cos(2φ)

(121)K (t) = δω2
∞
∑

n=1

F2
ne

−�
2
n,2

Dt

R2

(122)Fn =
1

√

γ 2 − 1

1
√

Nn,2

γR
∫

R

dr
�n,2(r)

r
.

(123)Fn =
1

√

γ 2 − 1

1
√

Nn,2

4

π�3n,2

[

1−
1

γ 3

J ′2(�n,2)

J ′2(γ �n,2)

]

.

(124)F2
n =

8

γ 2 − 1

1

�n,2

[

1− 1
γ 3

J ′2(�n,2)

J ′2(γ �n,2)

]2

4 − �
2
n,2 +

[

�
2
n,2 −

4
γ 2

][

J ′2(�n,2)

J ′2(γ �n,2)

]2
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or

This expression for the expansion coefficients is evidently a simpler expression than its 
equivalent given in Eq. (B1) in Ziener et al. (2008).

The corresponding eigenvalues �n,2 can be obtained from Eq. (41) for ν = 2:

(125)F2
n =

8

γ 2 − 1

1

�
2
n,2

1

γ 4

[

γ 3J ′2(γ �n,2)− J ′2(�n,2)
]2

γ 2
[

4 − �
2
n,2

][

J ′2(γ �n,2)
]2

+
[

γ 2�
2
n,2 − 4

][

J ′2(�n,2)
]2

.

Fig. 5  Diffusion propagator according to Eq. (119) around a cylinder with radius R = 1µm, diffu-
sion coefficient D = 1µm2/ms and γ = 8. The initial position is at r0 = 4µm and φ0 = π/4. For 
small times (exemplary for t = 1ms) the transition probability is concentrated around the initial posi-
tion. For large times (exemplary for t = 100ms) the diffusion propagator takes the constant value 
limt→∞ p(r ,φ, r0,φ0, t) =

1

πR2[γ 2−1]
= 5.05254× 109 m−2.
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and the following sums can be used to check if a sufficient numerical accuracy is 
obtained:

Spheres

In the three-dimensional case the diffusion occurs between two concentric spheres, and, 
thus, the diffusion volume corresponds to

The orthogonal eigenfunctions of the eigenvalue equation (112) are

with the radial eigenfunctions ψm,ν(r) given in Eq. (75), the respective normalization 
constants Nm,ν are given in Eq. (102) and the spherical harmonics are defined by

where Pµ
ν  denote the associated Legendre polynomials which are defined for the nega-

tive upper index as

(126)Y ′

2(�n,2)J
′

2(γ �n,2) = J ′2(�n,2)Y
′

2(γ �n,2) ,

(127)

∞
∑

n=1

F2
n =

1

2γ 2

(128)

∞
∑

n=1

F2
n�

2
n,2 = 2

1+ γ 2

γ 4

(129)

∞
∑

n=1

F2
n

�
2
n,2

=
ln(γ )

4[γ 2 − 1]

(130)

∞
∑

n=1

F2
n

�
4
n,2

=
1

32
.

(131)V =
4

3
πR3

[

γ 3
− 1

]

.

(132)φm,ν,µ(r, θ ,φ) =
ψm,ν(r)
√

R3Nm,ν

Yν,µ(θ ,φ)

(133)m = +1, . . . ,+∞

(134)ν = 0,+1, . . . ,+∞

(135)µ = −ν, . . . , 0, . . . ,+ν ,

(136)Yν,µ(θ ,φ) =

√

2ν + 1

4π

[ν − µ]!

[ν + µ]!
Pµ
ν (cos(θ))e

iµφ ,

(137)P−µ
ν (cos(θ)) = [−1]µ

[ν − µ]!

[ν + µ]!
Pµ
ν (cos(θ)) .
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In contradiction to the two-dimensional case, the index ν in the three-dimensional case 
is in the range ν = 0,+1, . . . ,+∞. The index µ takes the values µ = −ν, . . . , 0, . . . ,+ν. 
Therefore, the propagator given in Eq. (110) can be written as

The sum over the index µ can further be simplified by using the explicit expression of 
the spherical harmonics given in Eq. (136) and the definition of the associated Legendre 
polynomials with a negative upper index from Eq. (137):

Evidently, the transition probability p(r, θ ,φ, r0, θ0,φ0, t) to go in time t from position 
(r0, θ0,φ0) to position (r, θ ,φ) depends on the radial distances r0 and r and the spherical 
angle � = (θ0,φ0; θ ,φ) that can be determined by the spherical law of cosines:

Using the addition theorem for spherical harmonics [see 14.30.9 in Olver et al. (2010)]

the transition probability can finally be written in the form

Comparing the addition theorem for spherical harmonics in Eq. (141) with the sum over 
the product of the spherical harmonics in Eq. (139), the results of Eq. (10) on page 382 of 
section 14.16. I. in Carslaw and Jaeger (1959) can be reproduced.

The three-dimensional dipole field has the shape

(138)

p(r, θ ,φ, r0, θ0,φ0, t) =
3

4πR3
[

γ 3 − 1
]

+
1

R3

∞
∑

m=1

∞
∑

ν=0

+ν
∑

µ=−ν

e
−�2m,ν

Dt

R2

Nm,ν

ψm,ν(r)ψm,ν(r0)Yν,µ(θ ,φ)Y
∗

ν,µ(θ0,φ0) .

(139)

+ν
∑

µ=−ν

Yν,µ(θ ,φ)Y
∗

ν,µ(θ0,φ0) =
2ν + 1

4π
Pν(cos(θ))Pν(cos(θ0))

+
2ν + 1

2π

+ν
∑

µ=+1

[ν − µ]!

[ν + µ]!
P
µ
ν (cos(θ))P

µ
ν (cos(θ0)) cos (µ[φ − φ0])

=
2ν + 1

4π

+ν
∑

µ=0

[ν − µ]!

[ν + µ]!
P
µ
ν (cos(θ))P

µ
ν (cos(θ0))[2− δµ0] cos (µ[φ − φ0]) .

(140)cos(�) = cos(θ0) cos(θ)+ sin(θ0) sin(θ) cos(φ0 − φ) .

(141)

+ν
∑

µ=−ν

Yν,µ(θ ,φ)Y
∗

ν,µ(θ0,φ0) =
2ν + 1

4π
Pν(cos(θ0) cos(θ)+ sin(θ0) sin(θ) cos(φ0 − φ))

=
2ν + 1

4π
Pν(cos(�))

(142)

p(r, r0,�, t) =
1

4πR3

[

3

γ 3 − 1
+

∞
∑

m=1

∞
∑

ν=0

2ν + 1

Nm,ν

e
−�

2
m,ν

Dt

R2 ψm,ν(r)ψm,ν(r0)Pν(cos(�))

]

.

(143)f (r, θ ,φ) =
R3

r3

[

3 cos2(θ)− 1
]

= 4

√

π

5
Y20(θ ,φ)

R3

r3
.
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Introducing this shape function and the three-dimensional propagator from Eq. (138) 
into the definition of the autocorrelation function (108), leads to

with the expansion coefficients

The remaining Lommel integral can be solved by using the expression (103) for α = −1 
and ν = 2. The occurring Lommel functions S

−
5
2 ,+

7
2
(z) and S

−
3
2 ,+

5
2
(z) can explicitly be 

given by using the relation (22):

where A0, 72
(z) and A0, 52

(z) can be obtained from Eq. (25). Thus, the integration yields:

Introducing the normalization constant from Eq. (102) yields:

For ν = 2 the spherical Bessel functions can be expressed in terms of the sine and cosine 
function:

(144)K (t) = δω2
∞
∑

m=1

F2
me

−�
2
m,2

Dt

R2

(145)

Fm =

√

3

4πR3
[

γ 3 − 1
]

π
∫

0

dθ

2π
∫

0

dφ

γR
∫

R

dr r2 sin(θ)4

√

π

5
Y20(θ ,φ)

R3

r3
Y20(θ ,φ)
√

R3Nm,2

ψm,2(r)

(146)=
1

√

γ 3 − 1

√

3

5

2
√

Nm,2

γR
∫

R

dr
ψm,2(r)

r
.

(147)S
−

5
2 ,+

7
2
(z) =

2

7

z−
5
2

2
7
2Ŵ( 72 )

A0, 72
(z) = z−

7
2

(148)S
−

3
2 ,+

5
2
(z) =

2

5

z−
3
2

2
5
2Ŵ( 52 )

A0, 52
(z) = z−

5
2

(149)Fm =
1

√

γ 3 − 1

√

3

5

6
√

Nm,2

1

�
4
m,2

[

1−
1

γ 4

j′2(�m,2)

j′2(γ �m,2)

]

.

(150)F2
m =

216

5

1

�
2
m,2

1

γ 3 − 1

[

1− 1
γ 4

j′2(�m,2)

j′2(γ �m,2)

]2

γ 2�2m,2−6

γ 3

[

j′2(�m,2)

j′2(γ �m,2)

]2
+ 6− �

2
m,2

.

(151)j2(z) =

[

3

z3
−

1

z

]

sin(z)−
3

z2
cos(z)

(152)y2(z) = −

[

3

z3
−

1

z

]

cos(z)−
3

z2
sin(z)
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which will be necessary for further simplifications. The derivative of the spherical Bessel 
functions can be simplified by using the relation (151):

Finally, the expansion coefficients can be written as

or in the form

This expression for the expansion coefficients is much more simpler than the equivalent 
expression given in Eq. (B4) in Ziener et al. (2008) or in Eq. (7) in Ziener et al. (2010).

The eigenvalues can be obtained from Eq. (77) for ν = 2, which can be further simpli-
fied using the expressions (151) and (152). Finally, the following transcendental equation 
has to be solved:

This equation coincides with Eq. (5) in Kurz et al. (2014) for �m,2 =
√
κ  and γ = η−1/3.

The following sums can be used to check if a sufficient numerical accuracy is obtained:

(153)
j′2(�m,2)

j′2(γ �m,2)
= γ 4

[4�2m,2 − 9] sin(�m,2)+ �m,2[9− �
2
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[4γ 2�
2
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2
m,2] cos(γ �m,2)

.

(154)
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1
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2
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2
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2
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[4γ 2
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2
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2
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tan(�m,2[γ − 1])

�m,2[γ − 1]
=
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+
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.
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Summary and conclusions
Cylindrical and spherical Bessel functions are frequently employed in treating bound-
ary value and eigenvalue problems in applied mathematics (Gray and Mathews 1895; 
McLachlan 1941; Kac 1966). In this work, the general orthogonality relation and Lommel 
integral of a linear combination of both cylindrical and spherical Bessel functions, respec-
tively, are considered. For a given radius interval of R ≤ r ≤ γR, Neumann boundary con-
ditions are assumed and the corresponding approximated first eigenvalues �1,ν for small 
� and ν are compared in their γ-dependency with expressions from the literature in the 
same limit and the exact numerical solution for cylindrical and spherical Bessel functions, 
respectively (see Figs. 3, 4). It is shown that all expressions agree well for γ → 1. Conse-
quently, explicit terms for the orthogonality relation, normalization constant and Lommel 
integral are given in both model geometries using a discretized form of the respective 
Bessel differential equations. In the case of spherical Bessel functions, these results are a 
generalization from integer indices, that can be presented in terms of trigonometric func-
tions and have so mostly to treat related physical problems (Carslaw and Jaeger 1959), 
to arbitrary complex-valued indices. Moreover, a numerical implementation to calculate 
the relevant eigenvalues is provided and the results are applied to a scenario in magnetic 
resonance physics where spin diffusion processes between two magnetic concentric cyl-
inders or two concentric spheres occur. Thereby, an eigenfunction expansion of the spin 
transition probability function results in analytic expressions for the expansion coef-
ficients of the frequency autocorrelation function K(t). These are mathematically easier 
to grasp and, therefore, to implement numerically, than equivalent expressions that have 
been derived recently (Ziener et al. 2008). The results might be useful to obtain analyti-
cal expressions for the transverse relaxation in Carr-Purcell-Meiboom-Gill experiments 
where Jensen and Chandra have provided a relation between the diffusion-dependent 
part of transverse relaxation and the frequency autocorrelation function within a weak 
field approximation (Jensen et al. 2001; Jensen and Chandra 2000). With the paramag-
netic properties of deoxygenated hemoglobin, such analyses may then be applied to study 
highly organized (cylindriform) capillary arrangements in, for instance, skeletal muscle 
tissue (Ziener et al. 2012). Likewise, the results for spherical geometries may be used to 
quantify microstructural parameters in lung tissue by treating lung alveoli as spherical 
entities that are surrounded by a dense capillary network. A further analysis might con-
sider mixed boundary conditions and/or extend the results to other model geometries.
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