50 research outputs found

    Intense ultra-broadband down-conversion from randomly poled nonlinear crystals

    Full text link
    Randomly poled nonlinear crystals are shown to be able to emit intense ultra-broadband photon-pair fields with properties comparable to those coming from chirped periodically-poled crystals. Their intensities scale linearly with the number of domains. Also photon pairs extending over intervals with durations comparable to one optical cycle can be generated in these crystals.Comment: 6 pages, 4 figure

    Experimental observation of second-harmonic generation and diffusion inside random media

    Get PDF
    We have experimentally measured the distribution of the second-harmonic intensity that is generated inside a highly-scattering slab of porous gallium phosphide. Two complementary techniques for determining the distribution are used. First, the spatial distribution of second-harmonic light intensity at the side of a cleaved slab has been recorded. Second, the total second-harmonic radiation at each side of the slab has been measured for several samples at various wavelengths. By combining these measurements with a diffusion model for second-harmonic generation that incorporates extrapolated boundary conditions, we present a consistent picture of the distribution of the second-harmonic intensity inside the slab. We find that the ratio 2ω/Lc\ell_{2\omega}/L_c of the mean free path at the second-harmonic frequency to the coherence length, which was suggested by some earlier calculations, cannot describe the second-harmonic yield in our samples. For describing the total second-harmonic yield, our experiments show that the scattering parameter at the fundamental frequency \k_{1\omega}\ell_{1\omega} is the most relevant parameter in our type of samples.Comment: 10 pages, 7 figure

    Resonant second harmonic generation in random dielectric structures

    Get PDF
    International audience; We show that resonant second harmonic generation can be obtained in random dielectric structures. The scheme is based on internal resonances due to the optical counterpart of Anderson localization. By making use of different localization lengths at the fundamental and at the second harmonic frequencies, we predict a conversion efficiency that is four orders of magnitude higher than a bulk material and even one order of magnitude higher than an ideal phase matched slab of the same size. The method is highly insensitive to fabrication tolerances, and provides excellent angle tunability. [DOI:10.2971/jeos.2006.06021

    Emission of photon echoes in a strongly scattering medium

    Full text link
    We observe the two- and three-pulse photon echo emission from a scattering powder, obtained by grinding a Pr3+^{3+}:Y2_2SiO5_5 rare earth doped single crystal. We show that the collective emission is coherently constructed over several grains. A well defined atomic coherence can therefore be created between randomly placed particles. Observation of photon echo on powders as opposed to bulk materials opens the way to faster material development. More generally, time-domain resonant four-wave mixing offers an attractive approach to investigate coherent propagation in scattering media

    Mapping of periodically poled crystals via spontaneous parametric down-conversion

    Full text link
    A new method for characterization of periodically poled crystals is developed based on spontaneous parametric down-conversion. The method is demonstrated on crystals of Y:LiNbO3, Mg:Y:LiNbO3 with non-uniform periodically poled structures, obtained directly under Czochralski growth procedure and designed for application of OPO in the mid infrared range. Infrared dispersion of refractive index, effective working periods and wavelengths of OPO were determined by special treatment of frequency-angular spectra of spontaneous parametric down-conversion in the visible range. Two-dimensional mapping via spontaneous parametric down-conversion is proposed for characterizing spatial distribution of bulk quasi-phase matching efficiency across the input window of a periodically poled sample.Comment: 19 pages, 6 figure

    Nonlinear effects in random lasers

    Get PDF
    Recent numerical and theoretical studies have demonstrated that the modes at threshold of a random laser are in direct correspondence with the resonances of the same system without gain, a feature which is well known in a conventional laser but which was not known until recently for a random laser. This paper presents numerical results, which extend such studies to the multimode regime that takes place when the pumping rate is progressively increased above threshold. Behavior that is already known in standard lasers, such as mode competition and nonlinear wave-mixing, are shown to also take place in random lasers thus reinforcing their recent modal description. However, due to the complexity of the laser modes and to the openness of such lasers, which requires large external pumping to compensate for strong loss, one observes that these effects are more pronounced than in a conventional laser
    corecore