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Experimental observation of second-harmonic
generation and diffusion inside random media
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We have experimentally measured the distribution of the second-harmonic intensity that is generated inside a
highly scattering slab of porous gallium phosphide. Two complementary techniques for determining the distri-
bution are used. First, the spatial distribution of second-harmonic light intensity at the side of a cleaved slab
has been recorded. Second, the total second-harmonic radiation at each side of the slab has been measured for
several samples at various wavelengths. By combining these measurements with a diffusion model for second-
harmonic generation that incorporates extrapolated boundary conditions, we present a consistent picture of
the distribution of the second-harmonic intensity inside the slab. We find that the ratio �2� /Lc of the mean free
path at the second-harmonic frequency to the coherence length, which was suggested by some earlier calcula-
tions, cannot describe the second-harmonic yield in our samples. For describing the total second-harmonic
yield, our experiments show that the scattering parameter at the fundamental frequency k1��1� is the most
relevant parameter in our type of samples. © 2009 Optical Society of America

OCIS codes: 190.4400, 290.4210, 290.1990.
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. INTRODUCTION
ptical second-harmonic generation inside inhomoge-
eous media has attracted much interest for biological ap-
lications, such as high-contrast microscopy [1], and for
hotonic applications, such as high-efficiency frequency
onversion in granular nonlinear dielectrics [2]. The
econd-harmonic signal radiated from a random medium
s also an informative probe of the fundamental and the
econd-harmonic intensity distribution inside the me-
ium. Second-harmonic signals provide valuable informa-
ion about multiple-scattering processes inside a random
edium, which is not easily accessible by other methods.
reviously, these signals have been used to study the an-
ular, spatial, and temporal correlations inside scattering
edia [3–5].
Currently available first-principles theories of optical

econd-harmonic generation in multiple-scattering media
onsider only the case of the mean free path being much
arger than the wavelength, far from the Anderson local-
zation regime [6,7]. Many articles have discussed inter-
erence effects in multiple-scattering nonlinear media,
uch as the effect of weak localization or the enhanced for-
ard scattering [8–11].
The efficiency of the nonlinear conversion in granular

ielectrics is related to the minimized role of phase-
atching in such a medium. Phase-matching is essential

or the efficiency of three-wave mixing processes in non-
inear materials. The optical dispersion in the nonlinear

aterial results in a phase-mismatch between the funda-
ental and the higher-harmonic propagating light [12].
There are two conventional methods to overcome the
0740-3224/09/020235-9/$15.00 © 2
hase-mismatch. The first method makes use of the fact
hat in birefringent and nonlinear materials, it is possible
o fulfill the phase-matching condition by adjusting the
rystal orientation with respect to the beam. The second
ethod, called quasi-phase-matching, uses a periodically

oled polarizability of the material. The nonlinearity of
he crystal is modulated such that the extra momentum,
hich results from the phase-mismatch, can be trans-

erred to the crystal. In both of these methods, the total
onversion yield increases quadratically with the length
f the light path inside the medium.

Recently, a novel method, called random-quasi-phase-
atching, has been introduced in which the crystal orien-

ation is randomly varied along the beam path by using a
owder [2]. As suggested from theory and confirmed by
he experiment, for this new method, the accumulated
econd-harmonic energy increases linearly with the
ample thickness. By using this method, a relatively high
econd-harmonic signal can be extracted from many semi-
onductor powders, which were otherwise (in their bulk
orm) useless for conventional methods. Using random-
uasi-phase-matching, second-harmonic generation can
e obtained for a larger bandwidth and acceptance angle
han conventional methods.

A high second-harmonic yield has also been observed
y Tiginyanu et al. [13] for strongly scattering porous-
aP. Melnikov and coworkers [14,15] have shown that the

econd-harmonic signal in the specular-reflection direc-
ion is enhanced by orders of magnitude after anodically
tching the single-crystalline GaP wafer. However, no
omparison with a theoretical model had been provided
009 Optical Society of America
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or these observations. The distribution of second-
armonic light inside such a medium has also not been in-
estigated experimentally.

In this paper, we use two complementary techniques to
etermine the distribution of the second-harmonic inten-
ity inside a multiple-scattering slab. In the first experi-
ent, the spatial distribution of second-harmonic light in-

ensity at the side of a cleaved slab is measured. In the
econd experiment, the total second-harmonic radiation
t each side of the slab is measured. On the macroscopic
evel, our experimental results confirm the predictions of
he diffusion theory for distribution of the second-
armonic intensity in a multiple-scattering medium. On
he microscopic level, however, the only available theoret-
cal model by Kravtsov et al. [6], which is based on the dif-
usion theory, is unable to describe our experimental re-
ults. Their model suggests the ratio �2� /Lc of the
ransport mean free path at the second-harmonic fre-
uency to the coherence length as the universal param-
ter for the conversion yield. By performing measure-
ents at a range of scattering strengths and frequencies
e find that their model does not apply to our type of

amples. Instead, our measurements show that the
econd-harmonic yield follows a consistent dependence on
he transport mean free path at the fundamental fre-
uency �1�.
In Sections 2–4 we briefly review the available theories

f second-harmonic generation in random media. We
resent our derivation of the intensity distribution from a
iffusion model with the extrapolated boundary condi-
ions. In the experimental section we describe two sepa-
ate measurement techniques that probe the distribution
f second-harmonic light generation inside a highly scat-
ering sample. Results of our experiments are then com-
ared with predictions of the diffusion model.

. THEORY
. Optical Nonlinearity in Opaque Material
n opaque medium may also be optically nonlinear. This
onlinearity can be an intrinsic property of the bulk ma-
erial or a result of the enormous interfacial area present
n porous objects. The second-order nonlinearity is absent
n many noncrystalline materials or crystal structures be-
ause of the presence of inversion symmetry. Relatively
arge nonlinearities may arise at the interfaces of these

aterials with others or with vacuum due to symmetry-
reaking at the interface. The scientific understanding of
ptical nonlinear processes in strongly scattering materi-
ls is still in the preliminary phase. Some models have
een developed [6,7] based on the diffusion approxima-
ion, in which interference effects are assumed to be av-
raged out and the sample size L is much larger than the
ransport mean free path.

In these diffusion models the incident wave at the fun-
amental frequency � experiences several scattering
vents before leaving the random medium. Light at the
econd-harmonic frequency is generated during the
ultiple-scattering process. The propagation direction of

he second-harmonic light is scrambled within one trans-
ort mean free path �2�, thus becoming an isotropic
ource of diffusive photons at the second-harmonic fre-
uency. The effect of phase-mismatch between the funda-
ental and the second-harmonic light is negligible when

he transport mean free path is much smaller than the co-
erence length Lc����� / �2k1�−k2��, where k1� and k2�

re the wave vector magnitudes at the fundamental and
he second-harmonic frequencies. Therefore, in a random
edium that consists of grains showing a nonlinear re-

ponse, the effect of constructive interference can be over-
ome by selecting grain sizes to be smaller than the coher-
nce length. It has been experimentally shown that the
econd-harmonic yield from an equal amount of material
ncreases with the grain size until the grain size ap-
roaches the coherence length [2].
Overcoming the destructive interference due to phase-
ismatch is also possible by introducing scatterers inside
homogeneous nonlinear crystal. In such a medium the

undamental and second-harmonic waves scatter differ-
ntly, therefore the destructive interference of the other-
ise copropagating waves does not occur, providing �1�,

2��Lc.

. Review of Existing Theories
econd-harmonic generation in random media has been
heoretically modeled for three different systems in two
eports. Here we briefly introduce and compare these
odels as they will be needed for comparison with our ex-

erimental results. The important prediction of these
odels is the magnitude of the mesoscopic [16] second-
armonic conversion rate �, which is defined as the
econd-harmonic intensity per volume, generated inside
he scattering medium, per unit of fundamental energy
ensity squared.
In the first report Kravtsov et al. [6] have considered

wo different systems. In the first system, scattering is in-
roduced in a slab of nonlinear dielectric by adding a
mall volume fraction of pointlike scatterers. The micro-
copic nonlinear polarizability is assumed to be unaf-
ected by the presence of scatterers, thus constant across
he sample. We refer to this model as “homogeneous non-
inear background model.” The medium can be optically
ispersive, �n�n2w−n1w�0. When �n�0, the conver-
ion rate � is independent of scattering parameters
1w�1w and k2w�2w When �n�0, � is found to depend on
1w�1w as

� = A�0�n2�n1�
2 �	�2��2 arccot�

��2�

�1

2
+

�2�

�1�
	Lc
 , �1�

here A is a dimensionless prefactor, 	�2� is the norm of
he nonlinear polarizability of the bulk medium averaged
ver all directions, Lc is the coherence length, and �1w and
2w are mean free paths at fundamental and second-
armonic frequencies. All parameters in Eq. (1) can be

requency dependent due to the optical dispersion of the
aterial. In Eq. (1), 	�2� and Lc are microscopic properties

f the bulk material while �1w and �2w are mesoscopic
roperties that depend on the porous structure of the ma-
erial. Equation (1) predicts that as the mean free path at
he second-harmonic frequency becomes small relative to
he coherence length, the conversion rate should increase.
he derivation of this result assumes weak multiple-
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cattering, k1w�1w
1, k2w�2w
1.
The second system that Kravtsov et al. [6] have consid-

red is a dense powder of nonlinear grains in which the
rain size is larger than the wavelength and much
maller than the mean free path. This system is similar to
amples analyzed in [2]. We call this model the
nonlinear-powder model.”

In the second report, Makeev and Skipetrov [7] have in-
roduced a third system. They have modeled a suspension
f colloidal particles. We refer to this model as the “non-
inear colloidal suspension model.” In their model, the
onversion centers are the same as the scatterers and the
ackground medium is linear. They found that, for these
uspensions, the second-harmonic intensity divided by
he number of scatterers shows no explicit dependence on
he multiple-scattering properties of the suspension. In
heir model, the second-harmonic conversion rate is given
y the following simple product:

� = B��2�
2�, �2�

here � is the concentration of colloidal particles, 
2� is
he total second-harmonic cross section of an isolated par-
icle, v2� is the energy velocity at the second-harmonic
requency, and B is a dimensionless number.

In all three models, the nonlinearity is assumed to be
o low that the distribution of fundamental diffusive pho-
ons is not affected, therefore the energy density at fun-
amental frequency U1��z , t� can be calculated by solving
he diffusion equation for an optically linear multiple-
cattering slab.

. Macroscopic Distribution of the Second-Harmonic
ntensity Inside an Opaque Slab
ollowing the literature [6,7], we assume the source dis-
ribution of the second-harmonic diffusive photons inside
he opaque material S2��r , t� to be equal to the conversion
ate � times the square of the energy density of the fun-
amental light U1��r , t�

S2��r,t� = �U1�
2 �r,t�. �3�

he exact value of � depends on the model and the sample
ype [Eq. (1) sets an example]. Being a mesoscopic quan-
ity, � will not affect the macroscopic intensity distribu-
ion except for changing an overall prefactor.

For a slab of finite thickness, illuminated with a con-
inuous plane wave of intensity I0, the following set of dif-
usion equations can be written for the distribution of fun-
amental and second-harmonic diffusive-photon
ensities:

D1�

d2U1��z�

dz2 = − S1��z�, �4�

D2�

d2U2��z�

dz2 = − �U1�
2 �z�, �5�

here D1�=v1��1� /3 and D2�=v2��2� /3 are the diffusion
onstants at the fundamental at the second-harmonic fre-
uencies and v1� and v2� are the energy velocities in the
edium. The source term S1��z� denotes the distribution

f the diffusive light source at the fundamental frequency.
hese equations must be solved together with the follow-
ng boundary conditions [17]:

U1��z� − �1��
dU1��z�

dz
= 0 at z = 0, �6�

U1��z� + �1��
dU1��z�

dz
= 0 at z = L, �7�

U2��z� − �2��
dU2��z�

dz
= 0 at z = 0, �8�

U2��z� + �2��
dU2��z�

dz
= 0 at z = L, �9�

here �1�� and �2�� are the extrapolation lengths at the in-
idence interface of the slab and �1�� and �2�� are the ex-
rapolation lengths at the opposite interface of the slab at
he corresponding frequencies.

There are various ways of formulating the source dis-
ribution at the fundamental frequency S1��z�. A phenom-
nological and perhaps the most practical method [18] is
o set the source at one transport mean free path from the
ncident interface, inside the slab S1��z�
�v1�I0 /�1����z /�1�−1�. A natural extension [19] to the
revious description considers a source term that expo-
entially decreases with depth, with a decay length equal
o the mean free path S1��z�= �v1�I0 /�1��exp�−z /�1��. In
he following calculation we use the latter description.

By integrating the diffusion Eq. (4) over an exponential
ource and applying boundary conditions (6) and (7) we
erive, for inside of the slab,

U1��z� = 3I0���1� + �1�� ��L + �1�� − z�

�1��L + �1�� + �1�� �
−

2

3
exp�−

z

�1�
	� ,

�10�

here the thickness L of the slab is considered much
arger than the mean free path, and thus terms such as
xp�−L /��� are neglected.

The second-harmonic energy density is given by insert-
ng the result of Eq. (10) in diffusion Eq. (5) followed by a
ouble integration. The total generated second-harmonic
adiation that is propagating in the 2� spherical angle
round the incidence direction is referred to as the for-
ard radiation and denoted by T2�. The total radiation

hat is propagating in the opposite (backward) direction is
enoted by R2�. For a slab illuminated by a plane wave,
hese two quantities are given by

R2� = +
D2�

�2�

dU2��z�

dz 

z=0

, �11�

T2� = −
D2�

�2�

dU2��z�

dz 

z=L

. �12�

nserting the fundamental photon-density distribution
10) in diffusion Eq. (5) and integrating yields the second-
armonic photon-density distribution inside the slab,
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U2��z� = ��2�� + z�R2� − ��
0

z�
0

z1

U1�
2 �z2�dz2dz1. �13�

oundary condition (8) has been applied. Applying the
oundary condition (9) yields R2�. Expressions for U2�,
2� and T2� as functions of �, I0, L, �1�, �1�, and �2� were
btained by combining Eqs. (10), (11), and (13), with
oundary condition (9) in MATHEMATICA. The closed forms
f the answers contain many terms and are not necessary
o present here for the purpose of the discussions in this
aper. In completion of earlier calculations [7], we have
ncluded the extrapolated boundary conditions and expo-
entially decaying source term for fundamental light.
We have compared the internal distribution of second-

armonic intensity in the limiting case of vanishing ex-
rapolation length �1�� =�2�� =0 with the corresponding re-
ult stated in [7] and found that their approach works
ell for the case of optically thick slabs with zero extrapo-

ation length, i.e., absorbing boundaries. The effect of the
nite extrapolation length is not negligible, regardless of
he slab thickness.

Here we present the answer up to the first order in
1� /L. The first two nonzero orders suffice for most of our
iscussions,

R2� =
9�I0

2L

4 �1 +
�1��

�1�
	2�1 +

4�2�2�� + �2�� �

3L

−
8�1�

2 �5�1� + 6�1�� �

9L��1� + �1�� �2 � + O��1�

L 	 , �14�

T2� =
3�I0

2L

4 �1 +
�1��

�1�
	2�1 +

4�2�2�� + �1�� �

L 	
+ O��1�

L 	 . �15�

As was mentioned earlier in this section, the mesos-
opic conversion rate � shows up only in prefactors in
qs. (14) and (15) and does not affect the macroscopic dis-

ribution of radiation inside and around the slab. Our
erivation shows that the total second-harmonic intensity
s enhanced with the increasing extrapolation ratio

1�� /�1�. Physically, this enhancement is caused by the in-
reased trapping of fundamental light inside the diffusing
edium due to the interfaces.
Due to the variability of several parameters from

ample to sample, it turned out to be useful to experimen-
ally determine the ratio

� �
R2�

T2�

. �16�

n theory, the dimensionless quantity � is independent of
he extrapolation ratio. Up to the the first order in
�1� /L�, � is also independent of the conversion rate � and
he incident intensity I0. As reported in earlier works [3],
or optically thick slabs, ratio � converges to a constant,
.e., lim �→3 when L /� →�.
1�
The most appropriate (currently available) theoretical
odel for our type of samples is the homogeneous nonlin-

ar background model described in Subsection 2.B, in
hich the conversion rate is given by Eq. (1). The inten-

ity of the second-harmonic radiation is dependent on sev-
ral parameters. To compare any experimental result
ith any multiple-scattering theory, it is advantageous to

eparate the dependencies induced by multiple-scattering
mesoscopic) from variations that are caused by intrinsic
aterial properties (microscopic) and from geometrical

pecifications of the sample (macroscopic). Therefore, for
omparing the experimental results with the theory, we
ivide the measured second-harmonic backward radiation
2� by the sample thickness, the incident intensity

quared, and all prefactors of the arctan function in Eq.
1), which are material properties of GaP. We define the
ormalized yield as

� �
R2�

�n2�n1�
2 �	�2��2LI0

2 , �17�

hich is useful for comparing our data with the theories.
Note that in all of the above calculations, the absorp-

ion of fundamental and second-harmonic light is ne-
lected. This assumption is justified when the absorption
ength of the medium is much larger than L2 /�1�, which
s a justified assumption for our type of samples.

For a pulsed light source, generally, the stationary cal-
ulation is valid if �0
�D, where �0 is the pulse duration
nd �D is the Thouless time, defined as �D�L2 /D1�. Using
nalytical calculations, which will be presented else-
here, we have calculated the effect of the pulse duration
n the second-harmonic intensity distribution. Although
he nonstationary calculations are analytic, they contain
ong and complicated mathematical expressions that do
ot provide any intuition about the physical outcome. We
ound that for our specific experimental conditions, the
ifference between nonstationary and stationary solu-
ions is much less than our experimental error, therefore
e have presented our results only in comparison with

he stationary solutions.

. SAMPLES AND SETUP
. Samples
he porous-GaP samples were etched from commercially
vailable single crystal n type gallium phosphide wafers
20]. These wafers were doped with donor atoms with a
ensity range of 1018 cm−3. The fabrication procedure is
s follows. One side of a 9�9 mm piece of GaP wafer with
thickness of 500 �m is anodically etched in sulfuric acid
nder a controlled electromotive force. The electric cur-
ent is recorded in time. The total charge that is trans-
orted in the process is proportional to the amount of re-
oved material, allowing for the calculation of the

orosity for a known thickness of the etched layer. Differ-
nt postetching processes can be used to remove the top
ayer in order to improve optical characterization or to in-
rease the pore-size. We used eight samples with different
alues of the mean free path. These samples were previ-
usly fabricated for other optical experiments [21–23].
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A summary of the scattering characterization proper-
ies of the investigated samples is shown in Table 1. The
hicknesses were determined from scanning electron mi-
roscope images. The mean free path values were deter-
ined by the standard technique of measuring the linear

otal transmission. As a representative, the mean free
ath of sample 2 has been determined over the spectral
ange of 0.6 to 1.6 �m (Fig. 1) by coupling a spectrometer
o an integrating sphere setup. Dependence of the mean
ree path on the wavelength is largely due to the nano-
tructure of the samples. It also varies from sample to
ample. The magnitude of the nonlinear susceptibility of
orous-GaP for some lattice orientations is comparable to
hat of a commercial second-harmonic crystal, such as po-
assium dihydrogen phosphate (KDP). However, as GaP is
ot birefringent, it has no application for conventional
ethods of second-harmonic generation.

. Setup for Measuring Total Radiation
igure 2 shows a diagram of the integrating sphere setup
hat was used for measuring the total second-harmonic
ight that is radiated in the forward or the backward di-
ection from a porous-GaP slab. Several gold mirrors
uide the beam vertically into the entrance of a TiO2
oated integrating sphere. The sample can be laid down
t the entrance for transmission measurements or placed
eneath the sphere for reflection measurements. Two pho-
odiodes are positioned at two exit holes of the integrating
phere. At one exit hole, an amplified silicon detector
PDA55a—Thorlabs) connected to an oscilloscope
DL9040L—Yokogawa) measures the second-harmonic
ignal after the fundamental infrared light is filtered by a
old glass filter (KG5). At the other exit hole, a germa-
ium detector (DET10A—Thorlabs) connected to another
hannel of the same oscilloscope measures the scattered
undamental light. In this way, both fundamental and
econd-harmonic signals can be measured simulta-
eously.
For a second-harmonic signal to be detectable by nor-
al silicon detectors, an incident intensity of several gi-

awatts per centimeters squared is essential. A long pulse
t this intensity will damage GaP, therefore pulses
horter than nanoseconds with low repetition rates are
eeded. The light source we used was a traveling-wave
ollinear optical parametric amplifier of super-
uorescence (TOPAS—Light Conversion) pumped with a

Table 1. Summary of Specifications of the Samples
that are Analyzed in this Paper

Tag L��m� �2���m� �1���m� Ve�V�

1 35.5±1 0.27±0.04 2.49±0.29 14.7
2 43.7±1 0.26±0.03 1.85±0.29 14.7
3 23.5±1 0.26±0.04 2.18±0.24 14.7
4 32±1 0.83±0.06 2.50±0.28 22.5
5 26±1 0.60±0.05 2.22±0.18 11.2
6 83±3 1.10±0.08 4.71±0.37 10.0
7 126±4 1.24±0.08 3.38±0.48 15.0
8 116±3 1.58±0.11 5.75±0.60 10.0
a Ve is the applied electromotive force during the etching process.
b The measured value of mean free paths �2� and �1� are presented at �0

0.65 and 1.3 �m, correspondingly; L is the thickness of the porous region.
ubpicosecond laser (Hurricane—Spectra Physics) at
00 nm and a repetition rate of 1 kHz. The output central
avelength could be tuned continuously from
.55 to 2.2 �m with a bandwidth of 5 nm. The pulse was
ransform-limited with a duration of 150 fs. The undes-
red frequencies are filtered out from the output beam by
sing a polarizer and a low-pass filter (RG850—
horlabs).
For each sample, the radiated second-harmonic light in

he forward and backward directions was measured in a
undamental-wavelength range of 1.2 to 1.6 �m. Before
ach measurement, the incident power was checked by a
yroelectric head and a power meter (Ophir). The trans-
ittance of filters and responsivities and the linearity of

etectors were carefully taken into account before extract-
ng the second-harmonic yield.

Special attention is needed to correct for the transmit-
ance of the nonporous substrate. The total transmittance

ig. 1. Mean free path of a porous-GaP sample is wavelength-
ependent. As a representative, we plot the mean free path as a
unction of vacuum wavelength for sample 2. Similar curves are
lso obtained for all samples using total-transmission
easurements.

ig. 2. (Color online) Experimental setup for measuring the to-
al second-harmonic radiation in forward and backward direc-
ions. The porous-GaP slab is illuminated with a parallel beam of
50 fs infrared pulses. The integrating sphere collects the funda-
ental and the second-harmonic light radiated in all directions

rom one side of the sample. The sample position is either on the
op of the sphere for transmission measurements or attached be-
eath the sphere for reflection measurements. A silicon photode-
ector (PD-Si) behind a cold glass filter measures the second-
armonic signal in the visible range. In parallel, a germanium
hotodetector (PD-Ge) measures the transmitted fundamental
ight at the infrared range.
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f the porous-bulk interface depends on the refractive in-
ex mismatch at the interfaces and the directional distri-
ution of outgoing diffuse light known as the “escape
unction.” We used the escape function presented in [24],
ith an effective refractive index of 1.6±0.2 for the porous

egion. This effective refractive index was measured be-
ore based on the filling fractions and escape function
easurements from [22]. Using the Fresnel equations for

ransmittance at the substrate-air interface, the total an-
ularly averaged transmittance of the GaP substrate for
hese samples has been calculated to be 0.28±0.05, for
hich the magnitude of the error is mainly due to the un-

ertainty in the effective refractive index of the porous
edium.

. Setup for Measuring Effusion Function
o investigate the second-harmonic intensity distribution
nside a porous-GaP sponge in greater detail, the second-
armonic radiation from the side of a cleaved porous-GaP
lab was imaged under a microscope while the slab was
lluminated by a parallel beam of infrared pulses at nor-

al incidence. We refer to the diffusive energy flux at the
nterfaces of the random medium, which can be measured
ith our method as the “effusion function.” The measure-
ent of the effusion function is sensitive to details of the

istribution of the second-harmonic source inside the
lab. To test this sensitivity, we calculated the second-
armonic effusion function for a half-slab numerically
nd compared it with the bulk second-harmonic energy
istribution in a slab, predicted by Eq. (13). We observed
hat the second-harmonic effusion pattern approximates
he bulk second-harmonic intensity distribution well.
his result suggests that one can get an immediate quali-
ative sense of the second-harmonic energy distribution
rom the observation of the second-harmonic effusion
unction.

The effusion microscopy setup is shown in Fig. 3. The
ncident beam in this setup is a Gaussian infrared beam
f 3 mm in diameter with its center aimed toward the
dge of the sample. A cold glass filter in front of the CCD
amera blocks the fundamental light so that only the vis-
ble second-harmonic light is captured.

ig. 3. (Color online) Experimental setup for effusion micros-
opy measurements. The sample consists of a thin porous and
ighly scattering layer laying on top of a transparent substrate.
he CCD camera images the second-harmonic signal that is ra-
iated from the narrow cross section of the porous part of the
ample while it is illuminated by a parallel beam of infrared
ulses.
. RESULTS
. Dependence on Incident Power
t an incident wavelength of 1.2 �m, where the efficiency

s the highest, the dependence of the second-harmonic
ield on the incident power is measured for several
amples in the forward direction. The fundamental power
s linearly proportional to voltage V0 of the silicon detec-
or. The second-harmonic power is linearly proportional to
oltage V2 of the germanium detector. The measured re-
ation between output voltages is plotted in Fig. 4. From
his plot a consistent power-law dependence between in-
ident and second-harmonic powers is evident for these
amples. The result of fitting shows a power law P2��P0

�

ith �=1.87±0.03. In a second-order nonlinear process
he second-harmonic intensity is proportional to the
quare of the incident intensity. The observed deviation of
he experimentally measured � from 2.0 may be a sign of
onlinear (three photon) absorption inside the porous-
aP.

. Effusion Function at Second-Harmonic Frequency
he microscopy setup described in Subsection 3.C has
een used to capture the effusion function at the second-
armonic frequency. As the incident beam size is much

arger than the slab thickness, the effusion pattern is lat-
rally (parallel to the substrate) invariant. Roughness of
he section due to its porosity and cleaving-defects can
ause fluctuations in the observed intensity. The intensity
istribution is averaged in the lateral direction. The ex-
erimental result is compared with our numeric calcula-
ion of the diffusion model in Fig. 5. The bulk distribution
f the second-harmonic intensity is also plotted for com-
arison.
The measured second-harmonic intensity distribution

ualitatively agrees with the diffusion model. The inten-
ity has a maximum around one third of the slab thick-
ess, as was predicted theoretically in [7]. The largest de-
iation is observed near the edges, which we attribute to

ig. 4. Backward-radiated second-harmonic signal V2, detected
y the silicon detector, is scaled by the sample thickness and plot-
ed for three of the samples versus the signal detected by a ger-
anium detector V0 in bilogarithmic scales. The second-
armonic power is proportional to V2 and shows a power-law
ependence �exponent=1.87±0.03� on the incident power, which
s proportional to V0. Numbers in the legend indicate sample tags
s introduced in Table 1.
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he stray second-harmonic light that is leaving the other
nterfaces of the slab behind the imaging plane.

. Second-Harmonic Intensity Distribution in Far-Field
he measured value of �, defined by Eq. (16), has been
lotted versus the optical thickness of samples at various
undamental wavelengths in Fig. 6. The calculated � in
he framework of the stationary diffusion model according
o Eq. (16) is also plotted for comparison. We find a good
greement between measurement and theory for most of

ig. 5. (Color online) Inset, micrograph of the second-harmonic
ffusion intensity from a section of the porous-GaP slab while it
s illuminated with a parallel beam of infrared laser pulses from
he left. Brighter regions indicate higher effusion of second-
armonic light. Outset, the measured second-harmonic intensity

s averaged parallel to the substrate and its peak is normalized
o 1. The result of the experiment (symbols) is plotted versus the
osition inside the sample and is compared with the prediction of
he stationary diffusion model (solid curve), found from the nu-
eric calculation with no adjustable fitting parameters. Our the-

retical value for distribution of the second-harmonic intensity in
he bulk, which is presented in Subsection 2.C, is shown by the
otted curve. The theoretical fundamental-frequency intensity
istribution inside the slab (dashed curve) is plotted for
omparison.

ig. 6. (Color online) Ratio � between total second-harmonic
ight measured in the backward and the forward direction is plot-
ed versus the optical thickness L /�1� for various wavelengths
nd samples. The stationary diffusion prediction from Subsection
.C is plotted as a solid curve. We find a good agreement between
heory and measurements. Numbers 1–8 in the legend corre-
pond to the sample numbers introduced in Table 1.
he samples. Large error bars are mainly due to the un-
ertainty in the effective refractive index of the porous
edium.

. Second-Harmonic Yield
t several incident frequencies, we have measured the to-

al second-harmonic intensity radiated from the sample.
xtracting the absolute value of the conversion rate from

he second-harmonic intensity measurements is limited
y a large systematic shift that arises from uncertainties
n the response function of the setup. However, this sys-
ematic shift does not affect the relative values. Therefore
or testing theoretical models, we consider relative trends
ather than the absolute values.

To check whether the homogeneous nonlinear back-
round model of Kravtsov et al. [6] can describe our data,
he normalized yield � defined by Eq. (17) has been plot-
ed versus the ratio �2� /Lc. This plot is shown in Fig. 7(a)
or all samples and measured wavelengths. For this plot
he optical dispersion relation and the nonlinear polariz-
bility of the bulk GaP has been taken from measure-
ents of [25] and calculations of [26], respectively. Our
easurements show a trend opposite to the homogeneous

ackground model [6]. For an individual sample, the yield
ncreases with an increasing mean free path relative to
he coherence length. The incremental trend is different
rom sample to sample, which indicates that �2� /Lc is not
he universal parameter for describing the conversion
ate in our kind of samples.

For the normalized yield plotted versus the scattering
arameter at the fundamental frequency k1��1�, most of
he measurement points for all the samples are close to a
ingle curve. The consistent trend of an increasing yield
ith decreasing k1��1� occurs both when comparing dif-

erent wavelengths in a single sample and when compar-
ng different samples at the same wavelength. We have
tted these data to a power-law function and found an av-
rage exponent of −2.0±0.3.

. CONCLUSION
sing a microscopy technique, we have measured the

econd-harmonic intensity at the side of a cleaved-slab
uring its illumination with a Gaussian beam. We have
bserved that the internal distribution of second-
armonic intensity predicted by the diffusion model
grees with the experiment. The total intensity radiated
n the backward direction and the backward–forward ra-
io of the second-harmonic intensity has also been mea-
ured for a number of samples. The measured backward–
orward ratios show good agreement with the results of
he diffusion model.

For describing our distribution measurements, we have
resented a diffusion model for second-harmonic intensity
istribution in a strongly scattering nonlinear material in
hich the diffused fundamental intensity is converted

nto its second-harmonic via the process of degenerate
wo-photon mixing. The second-harmonic light also dif-
uses in the scattering medium. The internal distribution
nd the outgoing intensity in forward and backward di-
ections of a slab are derived based on the diffusion equa-
ion for light and extrapolated boundary conditions. As
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as reported previously [6,7], the diffusion theory pre-
icts that in the slab geometry, the total generated
econd-harmonic intensity increases linearly with the
hickness of the slab and depends quadratically on the ex-
rapolation ratio at the fundamental frequency. As a re-
ult of the diffusion model, the ratio � between the
econd-harmonic radiated intensity in backward and for-
ard directions is independent of the mesoscopic conver-

ion efficiency and is only given by the slab-geometry and
oundary conditions. Therefore, � provides a useful test
or the diffusion model, irrespective of the microscopic de-
ails. For a sufficiently thick slab, � approaches 3 as pre-
icted by the diffusion theory. This result has been con-
rmed by our measurements.

(a)

(b)

ig. 7. (Color online) (a) Second-harmonic normalized yield as
efined in Eq. (17) is plotted versus the ratio of the mean free
ath at the second-harmonic frequency to the coherence length
2� /Lc for various wavelengths and samples. The normalized
ield is defined as the total second-harmonic intensity generated
n the backward direction divided by the square of incident in-
ensity and the thickness of the slab and normalized for fre-
uency dependent material properties of GaP. The dotted curve
hows the value calculated from the theoretical model of
ravtsov et al. [6] plotted for comparison. No agreement has
een found between their theory and our measurements. Num-
ers 1–8 in the legend correspond to the sample numbers intro-
uced in Table 1. (b) Same data of (a) is plotted versus the scat-
ering strength at the fundamental frequency. The overall trend
an be described by a power-law relation, �� �k1��1���, �=
2.0±0.3, which is shown by the dashed curve.
Although current diffusion models describe well the
istribution of the second-harmonic intensity, the overall
onversion rate cannot be described by the available theo-
ies. We have found a consistent power-law dependence
etween the second-harmonic yield and the scattering pa-
ameter at the fundamental frequency, �� �k1��1���, with
n exponent of �=−2.0±0.3.

CKNOWLEDGMENTS
e thank Willem Vos for sharing equipment, which was

ssential for our experiments and Otto Muskens for help-
ul collaboration and discussion. This work is part of the
esearch program of the “Stichting voor Fundamenteel
nderzoek der Materie,” which is financially supported
y the “Nederlandse Organisatie voor Wetenschappelijk
nderzoek.”

EFERENCES
1. P. J. Campagnola and L. M. Loew, “Second-harmonic

imaging microscopy for visualizing biomolecular arrays in
cells, tissues and organisms: optical imaging,” Nat.
Biotechnol. 21, 1365–1360 (2003).

2. M. Baudrier-Raybaut, R. Haïdar, Ph. Kupecek, Ph.
Lemasson, and E. Rosencher, “Random quasi-phase-
matching in bulk polycrystalline isotropic nonlinear
materials,” Nature 432, 374–376 (2004).

3. J. F. de Boer, A. Lagendijk, R. Sprik, and S. Feng,
“Transmission and reflection correlations of second-
harmonic waves in nonlinear random media,” Phys. Rev.
Lett. 71, 3947–3950 (1993).

4. T. Ito and M. Tomita, “Speckle correlation measurement in
a disordered medium observed through second-harmonics
generation,” Phys. Rev. E 69, 036610 (2004).

5. M. Tomita, “Coherence coupling effect in a space- and
time-resolved, nonlinear-correlation measurement in a
multiple-scattering medium,” J. Opt. Soc. Am. B 22,
537–546 (2005).

6. V. E. Kravtsov, V. M. Agranovich, and K. I. Grigorishin,
“Theory of second harmonic generation in strongly
scattering media,” Phys. Rev. B 44, 4931–4942 (1991).

7. E. V. Makeev and S. E. Skipetrov, “Second-harmonic
generation in suspensions of spherical particles,” Opt.
Commun. 224, 139–147 (2003).

8. V. E. Kravtsov and V. M. Agranovich, “Nonlinear
backscattering from opaque media,” Phys. Rev. B 43,
13691–13694 (1991).

9. A. Heiderich, R. Maynard, and B. A. van Tiggelen,
“Coherent backscattering in nonlinear media,” Opt.
Commun. 115, 392–400 (1995).

0. A. G. Mal’shukov and G. D. Mahan, “Nonlinear forward
scattering of light in opaque media,” Phys. Rev. B 57,
7701–7704 (1998).

1. T. Wellens, B. Grémaud, D. Delande, and C. Miniatura,
“Coherent backscattering of light by nonlinear scatterers,”
Phys. Rev. E 71, 055603 (2005).

2. R. W. Boyd, Nonlinear Optics (Academic, 2003).
3. I. M. Tiginyanu, I. V. Kravetsky, J. Monecke, W. Cordts, G.

Marowsky, and H. L. Hartnagel, “Semiconductor sieves as
nonlinear optical materials,” Appl. Phys. Lett. 77,
2415–2417 (2000).

4. V. A. Melnikov, L. A. Golovan, S. O. Konorov, D. A.
Muzychenko, A. B. Fedotov, A. M. Zheltikov, V. Yu.
Timoshenko, and P. K. Kashkarov, “Second-harmonic
generation in strongly scattering porous gallium
phosphide,” Appl. Phys. B 79, 225–228 (2004).

5. L. A. Golovan, V. A. Melnikov, K. P. Bestemyanov, S. V.
Zabotnov, V. M. Gordienko, V. Yu. Timoshenko, A. M.
Zheltikov, and P. K. Kashkarov, “Disorder-correlated
enhancement of second-harmonic generation in strongly



1

1

1

1

2

2

2

2

2

2

2

Faez et al. Vol. 26, No. 2 /February 2009 /J. Opt. Soc. Am. B 243
photonic porous gallium phosphide,” Appl. Phys. B 81,
353–356 (2005).

6. A mesoscopic property in multiple-scattering of light [after
M. C. W. van Rossum and Th. M. Nieuwenhuizen,
“Multiple scattering of classical waves: microscopy,
mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371
(1999)] refers to those dependencies that are induced by
multiple-scattering. In accordance, parameters that are
dependent on intrinsic material properties are called
microscopic and properties that reflect geometrical
specification of the sample including its size are called
macroscopic.

7. A. Ishimaru, Wave Propagation and Scattering in Random
Media (Academic, 1978).

8. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent
backscattering of light by disordered media: analysis of
peak line shape,” Phys. Rev. Lett. 56, 1471–1474 (1986).

9. D. J. Durian, “Penetration depth for diffusing-wave
spectroscopy,” Appl. Opt. 34, 7100–7105 (1995).

0. B. H. Erné, D. Vanmaekelbergh, and J. J. Kelly,

“Morphology and strongly enhanced photoresponse of GaP
electrodes made porous by anodic etching,” J. Electrochem.
Soc. 143, 305–314 (1996).

1. F. J. P. Schuurmans, D. Vanmaekelbergh, J. van de
Lagemaat, and A. Lagendijk, “Strongly photonic
macroporous GaP networks,” Science 284, 141–143 (1999).

2. J. G. Rivas, “Light in strongly scattering
semiconductores—diffuse transport and Anderson
localization,” Ph.D. dissertation (Universiteit van
Amsterdam, 2002).

3. B. P. J. Bret, “Multiple light scattering in porous gallium
phosphide,” Ph.D. dissertation (Universiteit Twente, 2005).

4. M. U. Vera and D. J. Durian, “Angular distribution of
diffusely transmitted light,” Phys. Rev. E 53, 3215–3224
(1996).

5. D. E. Aspnes and A. A. Studna, “Dielectric functions and
optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs,
and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009
(1983).

6. Z. H. Levine, “Optical second harmonic susceptibilities:
frequency-dependent formulation with results for GaP and

GaAs,” Phys. Rev. B 49, 4532–4538 (1994).


