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We have experimentally measured the distribution of the second-harmonic intensity that is generated inside a
highly scattering slab of porous gallium phosphide. Two complementary techniques for determining the distri-
bution are used. First, the spatial distribution of second-harmonic light intensity at the side of a cleaved slab
has been recorded. Second, the total second-harmonic radiation at each side of the slab has been measured for
several samples at various wavelengths. By combining these measurements with a diffusion model for second-
harmonic generation that incorporates extrapolated boundary conditions, we present a consistent picture of
the distribution of the second-harmonic intensity inside the slab. We find that the ratio €,,/L, of the mean free
path at the second-harmonic frequency to the coherence length, which was suggested by some earlier calcula-
tions, cannot describe the second-harmonic yield in our samples. For describing the total second-harmonic
yield, our experiments show that the scattering parameter at the fundamental frequency %,,¢;, is the most
relevant parameter in our type of samples. © 2009 Optical Society of America

OCIS codes: 190.4400, 290.4210, 290.1990.

1. INTRODUCTION

Optical second-harmonic generation inside inhomoge-
neous media has attracted much interest for biological ap-
plications, such as high-contrast microscopy [1], and for
photonic applications, such as high-efficiency frequency
conversion in granular nonlinear dielectrics [2]. The
second-harmonic signal radiated from a random medium
is also an informative probe of the fundamental and the
second-harmonic intensity distribution inside the me-
dium. Second-harmonic signals provide valuable informa-
tion about multiple-scattering processes inside a random
medium, which is not easily accessible by other methods.
Previously, these signals have been used to study the an-
gular, spatial, and temporal correlations inside scattering
media [3-5].

Currently available first-principles theories of optical
second-harmonic generation in multiple-scattering media
consider only the case of the mean free path being much
larger than the wavelength, far from the Anderson local-
ization regime [6,7]. Many articles have discussed inter-
ference effects in multiple-scattering nonlinear media,
such as the effect of weak localization or the enhanced for-
ward scattering [8—11].

The efficiency of the nonlinear conversion in granular
dielectrics is related to the minimized role of phase-
matching in such a medium. Phase-matching is essential
for the efficiency of three-wave mixing processes in non-
linear materials. The optical dispersion in the nonlinear
material results in a phase-mismatch between the funda-
mental and the higher-harmonic propagating light [12].

There are two conventional methods to overcome the

0740-3224/09/020235-9/$15.00

phase-mismatch. The first method makes use of the fact
that in birefringent and nonlinear materials, it is possible
to fulfill the phase-matching condition by adjusting the
crystal orientation with respect to the beam. The second
method, called quasi-phase-matching, uses a periodically
poled polarizability of the material. The nonlinearity of
the crystal is modulated such that the extra momentum,
which results from the phase-mismatch, can be trans-
ferred to the crystal. In both of these methods, the total
conversion yield increases quadratically with the length
of the light path inside the medium.

Recently, a novel method, called random-quasi-phase-
matching, has been introduced in which the crystal orien-
tation is randomly varied along the beam path by using a
powder [2]. As suggested from theory and confirmed by
the experiment, for this new method, the accumulated
second-harmonic energy increases linearly with the
sample thickness. By using this method, a relatively high
second-harmonic signal can be extracted from many semi-
conductor powders, which were otherwise (in their bulk
form) useless for conventional methods. Using random-
quasi-phase-matching, second-harmonic generation can
be obtained for a larger bandwidth and acceptance angle
than conventional methods.

A high second-harmonic yield has also been observed
by Tiginyanu et al. [13] for strongly scattering porous-
GaP. Melnikov and coworkers [14,15] have shown that the
second-harmonic signal in the specular-reflection direc-
tion is enhanced by orders of magnitude after anodically
etching the single-crystalline GaP wafer. However, no
comparison with a theoretical model had been provided

© 2009 Optical Society of America
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for these observations. The distribution of second-
harmonic light inside such a medium has also not been in-
vestigated experimentally.

In this paper, we use two complementary techniques to
determine the distribution of the second-harmonic inten-
sity inside a multiple-scattering slab. In the first experi-
ment, the spatial distribution of second-harmonic light in-
tensity at the side of a cleaved slab is measured. In the
second experiment, the total second-harmonic radiation
at each side of the slab is measured. On the macroscopic
level, our experimental results confirm the predictions of
the diffusion theory for distribution of the second-
harmonic intensity in a multiple-scattering medium. On
the microscopic level, however, the only available theoret-
ical model by Kravtsov et al. [6], which is based on the dif-
fusion theory, is unable to describe our experimental re-
sults. Their model suggests the ratio €5,/L. of the
transport mean free path at the second-harmonic fre-
quency to the coherence length as the universal param-
eter for the conversion yield. By performing measure-
ments at a range of scattering strengths and frequencies
we find that their model does not apply to our type of
samples. Instead, our measurements show that the
second-harmonic yield follows a consistent dependence on
the transport mean free path at the fundamental fre-
quency €1,

In Sections 2—4 we briefly review the available theories
of second-harmonic generation in random media. We
present our derivation of the intensity distribution from a
diffusion model with the extrapolated boundary condi-
tions. In the experimental section we describe two sepa-
rate measurement techniques that probe the distribution
of second-harmonic light generation inside a highly scat-
tering sample. Results of our experiments are then com-
pared with predictions of the diffusion model.

2. THEORY

A. Optical Nonlinearity in Opaque Material

An opaque medium may also be optically nonlinear. This
nonlinearity can be an intrinsic property of the bulk ma-
terial or a result of the enormous interfacial area present
in porous objects. The second-order nonlinearity is absent
in many noncrystalline materials or crystal structures be-
cause of the presence of inversion symmetry. Relatively
large nonlinearities may arise at the interfaces of these
materials with others or with vacuum due to symmetry-
breaking at the interface. The scientific understanding of
optical nonlinear processes in strongly scattering materi-
als is still in the preliminary phase. Some models have
been developed [6,7] based on the diffusion approxima-
tion, in which interference effects are assumed to be av-
eraged out and the sample size L is much larger than the
transport mean free path.

In these diffusion models the incident wave at the fun-
damental frequency  experiences several scattering
events before leaving the random medium. Light at the
second-harmonic frequency is generated during the
multiple-scattering process. The propagation direction of
the second-harmonic light is scrambled within one trans-
port mean free path €5, thus becoming an isotropic
source of diffusive photons at the second-harmonic fre-
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quency. The effect of phase-mismatch between the funda-
mental and the second-harmonic light is negligible when
the transport mean free path is much smaller than the co-
herence length L.(w)=n/|2k;,~ks,|, Wwhere kq, and ks,
are the wave vector magnitudes at the fundamental and
the second-harmonic frequencies. Therefore, in a random
medium that consists of grains showing a nonlinear re-
sponse, the effect of constructive interference can be over-
come by selecting grain sizes to be smaller than the coher-
ence length. It has been experimentally shown that the
second-harmonic yield from an equal amount of material
increases with the grain size until the grain size ap-
proaches the coherence length [2].

Overcoming the destructive interference due to phase-
mismatch is also possible by introducing scatterers inside
a homogeneous nonlinear crystal. In such a medium the
fundamental and second-harmonic waves scatter differ-
ently, therefore the destructive interference of the other-
wise copropagating waves does not occur, providing €1,
€y,<L,.

B. Review of Existing Theories

Second-harmonic generation in random media has been
theoretically modeled for three different systems in two
reports. Here we briefly introduce and compare these
models as they will be needed for comparison with our ex-
perimental results. The important prediction of these
models is the magnitude of the mesoscopic [16] second-
harmonic conversion rate I', which is defined as the
second-harmonic intensity per volume, generated inside
the scattering medium, per unit of fundamental energy
density squared.

In the first report Kravtsov et al. [6] have considered
two different systems. In the first system, scattering is in-
troduced in a slab of nonlinear dielectric by adding a
small volume fraction of pointlike scatterers. The micro-
scopic nonlinear polarizability is assumed to be unaf-
fected by the presence of scatterers, thus constant across
the sample. We refer to this model as “homogeneous non-
linear background model.” The medium can be optically
dispersive, An=ngq,,-n1,#0. When An=0, the conver-
sion rate I' is independent of scattering parameters
k1wl and kg, €o, When An=0, I' is found to depend on
klwglw as

7T€2w

1 4y, ’
—+—|L,
2 €1w

where A is a dimensionless prefactor, y'? is the norm of
the nonlinear polarizability of the bulk medium averaged
over all directions, L, is the coherence length, and ¢;,, and
{9, are mean free paths at fundamental and second-
harmonic frequencies. All parameters in Eq. (1) can be
frequency dependent due to the optical dispersion of the
material. In Eq. (1), x® and L, are microscopic properties
of the bulk material while €;,, and €5, are mesoscopic
properties that depend on the porous structure of the ma-
terial. Equation (1) predicts that as the mean free path at
the second-harmonic frequency becomes small relative to
the coherence length, the conversion rate should increase.
The derivation of this result assumes weak multiple-

1)

' =Asqong,ni [x?]? arccot
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scattering, kq,,01,>1, koyfo,>1.

The second system that Kravtsov et al. [6] have consid-
ered is a dense powder of nonlinear grains in which the
grain size is larger than the wavelength and much
smaller than the mean free path. This system is similar to
samples analyzed in [2]. We call this model the
“nonlinear-powder model.”

In the second report, Makeev and Skipetrov [7] have in-
troduced a third system. They have modeled a suspension
of colloidal particles. We refer to this model as the “non-
linear colloidal suspension model.” In their model, the
conversion centers are the same as the scatterers and the
background medium is linear. They found that, for these
suspensions, the second-harmonic intensity divided by
the number of scatterers shows no explicit dependence on
the multiple-scattering properties of the suspension. In
their model, the second-harmonic conversion rate is given
by the following simple product:

r =pr2a)22w’ (2)

where p is the concentration of colloidal particles, 3o, is
the total second-harmonic cross section of an isolated par-
ticle, vy, is the energy velocity at the second-harmonic
frequency, and B is a dimensionless number.

In all three models, the nonlinearity is assumed to be
so low that the distribution of fundamental diffusive pho-
tons is not affected, therefore the energy density at fun-
damental frequency U,,(z,%) can be calculated by solving
the diffusion equation for an optically linear multiple-
scattering slab.

C. Macroscopic Distribution of the Second-Harmonic
Intensity Inside an Opaque Slab

Following the literature [6,7], we assume the source dis-
tribution of the second-harmonic diffusive photons inside
the opaque material Sy, (r,¢) to be equal to the conversion
rate I' times the square of the energy density of the fun-
damental light Uy(r,?)

SQw(r’t) = FU%w(r’t) (3)

The exact value of I' depends on the model and the sample
type [Eq. (1) sets an example]. Being a mesoscopic quan-
tity, I' will not affect the macroscopic intensity distribu-
tion except for changing an overall prefactor.

For a slab of finite thickness, illuminated with a con-
tinuous plane wave of intensity I, the following set of dif-
fusion equations can be written for the distribution of fun-
damental and  second-harmonic  diffusive-photon

densities:
dzUlw(Z)
D1m7 =-81.(2), (4)
d2U2w(Z) 5
20z = I'vi,(2), (5)

where D{,=v1,{1,/3 and Dy,=v9,f9,/3 are the diffusion
constants at the fundamental at the second-harmonic fre-
quencies and vy, and vy, are the energy velocities in the
medium. The source term S;,(z) denotes the distribution
of the diffusive light source at the fundamental frequency.
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These equations must be solved together with the follow-
ing boundary conditions [17]:

dUlm(z)
U1(2) = {14 5, -0 atz=0, (6)
au,,(z)
Ulw(2)+§'{wd—=0 atz=L, (7)
z
dU2w(Z)
Uszo(2) = &3, =0 atz=0, (8)
dz
dUZw(z)
U2w(2)+:2,wd—=0 atz=1L, (9)
z

where (], and ¢, are the extrapolation lengths at the in-
cidence interface of the slab and ¢], and {5, are the ex-
trapolation lengths at the opposite interface of the slab at
the corresponding frequencies.

There are various ways of formulating the source dis-
tribution at the fundamental frequency S;,(z). A phenom-
enological and perhaps the most practical method [18] is
to set the source at one transport mean free path from the
incident interface, inside the slab S16(2)
=(1l0/€1,)0(2/€1,—1). A natural extension [19] to the
previous description considers a source term that expo-
nentially decreases with depth, with a decay length equal
to the mean free path S;,(z)=1,lo/€1,)exp(-2/€1,,). In
the following calculation we use the latter description.

By integrating the diffusion Eq. (4) over an exponential
source and applying boundary conditions (6) and (7) we
derive, for inside of the slab,

1o+ ()L +,—2) 2 ( z)]
Er s A E
lo

Uy(2) =3I
W@ =8 a3

(10)

where the thickness L of the slab is considered much
larger than the mean free path, and thus terms such as
exp(-L/¢,) are neglected.

The second-harmonic energy density is given by insert-
ing the result of Eq. (10) in diffusion Eq. (5) followed by a
double integration. The total generated second-harmonic
radiation that is propagating in the 27 spherical angle
around the incidence direction is referred to as the for-
ward radiation and denoted by T',. The total radiation
that is propagating in the opposite (backward) direction is
denoted by Ry,. For a slab illuminated by a plane wave,
these two quantities are given by

Dy, dUy,(2)
RZw = 4+ — . (1 1)
we dz |
Dy, dUs,(2)
TZw == (12)
Lo dz z=L

Inserting the fundamental photon-density distribution
(10) in diffusion Eq. (5) and integrating yields the second-
harmonic photon-density distribution inside the slab,
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2 Zl
Us,(2) = ({3, +2)Rs, - Fj f U%w(zz)d22d21~ (13)
0Jo

Boundary condition (8) has been applied. Applying the
boundary condition (9) yields R,,. Expressions for U,,,
Ry, and Ty, as functions of T', I, L, €1, (1., and {5, were
obtained by combining Egs. (10), (11), and (13), with
boundary condition (9) in MATHEMATICA. The closed forms
of the answers contain many terms and are not necessary
to present here for the purpose of the discussions in this
paper. In completion of earlier calculations [7], we have
included the extrapolated boundary conditions and expo-
nentially decaying source term for fundamental light.

We have compared the internal distribution of second-
harmonic intensity in the limiting case of vanishing ex-
trapolation length ¢;,=¢5,=0 with the corresponding re-
sult stated in [7] and found that their approach works
well for the case of optically thick slabs with zero extrapo-
lation length, i.e., absorbing boundaries. The effect of the
finite extrapolation length is not negligible, regardless of
the slab thickness.

Here we present the answer up to the first order in
€1,/L. The first two nonzero orders suffice for most of our
discussions,

20 = + -

9rI2L ( s“iw)Zl 428, + 8,
1 1+ —m—

4 1o 3L
8¢1,(501,+6(,) l10
-———— |+0o|—], (14)
OL(€1,+L,,)? L
3TIGL( 4, \*( 4%+,
T2w = 1 + — 1 +
4 €1w L
O elw
ey 15
+0| (15)

As was mentioned earlier in this section, the mesos-
copic conversion rate I' shows up only in prefactors in
Eqgs. (14) and (15) and does not affect the macroscopic dis-
tribution of radiation inside and around the slab. Our
derivation shows that the total second-harmonic intensity
is enhanced with the increasing extrapolation ratio
{1./€1.- Physically, this enhancement is caused by the in-
creased trapping of fundamental light inside the diffusing
medium due to the interfaces.

Due to the variability of several parameters from
sample to sample, it turned out to be useful to experimen-
tally determine the ratio

In theory, the dimensionless quantity 7 is independent of
the extrapolation ratio. Up to the the first order in
(€1,/L), nis also independent of the conversion rate I' and
the incident intensity I,. As reported in earlier works [3],
for optically thick slabs, ratio 7 converges to a constant,
i.e., lim »—3 when L/{;,— .
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The most appropriate (currently available) theoretical
model for our type of samples is the homogeneous nonlin-
ear background model described in Subsection 2.B, in
which the conversion rate is given by Eq. (1). The inten-
sity of the second-harmonic radiation is dependent on sev-
eral parameters. To compare any experimental result
with any multiple-scattering theory, it is advantageous to
separate the dependencies induced by multiple-scattering
(mesoscopic) from variations that are caused by intrinsic
material properties (microscopic) and from geometrical
specifications of the sample (macroscopic). Therefore, for
comparing the experimental results with the theory, we
divide the measured second-harmonic backward radiation
Ry, by the sample thickness, the incident intensity
squared, and all prefactors of the arctan function in Eq.
(1), which are material properties of GaP. We define the
normalized yield as

R2w

YE o 17
wng i XP LI

which is useful for comparing our data with the theories.

Note that in all of the above calculations, the absorp-
tion of fundamental and second-harmonic light is ne-
glected. This assumption is justified when the absorption
length of the medium is much larger than L?/¢;,, which
is a justified assumption for our type of samples.

For a pulsed light source, generally, the stationary cal-
culation is valid if 7y> 7p, where 7; is the pulse duration
and 7p is the Thouless time, defined as 7p=L2/D;,,. Using
analytical calculations, which will be presented else-
where, we have calculated the effect of the pulse duration
on the second-harmonic intensity distribution. Although
the nonstationary calculations are analytic, they contain
long and complicated mathematical expressions that do
not provide any intuition about the physical outcome. We
found that for our specific experimental conditions, the
difference between nonstationary and stationary solu-
tions is much less than our experimental error, therefore
we have presented our results only in comparison with
the stationary solutions.

3. SAMPLES AND SETUP

A. Samples

The porous-GaP samples were etched from commercially
available single crystal n type gallium phosphide wafers
[20]. These wafers were doped with donor atoms with a
density range of 108 cm™3. The fabrication procedure is
as follows. One side of a 9 X9 mm piece of GaP wafer with
a thickness of 500 um is anodically etched in sulfuric acid
under a controlled electromotive force. The electric cur-
rent is recorded in time. The total charge that is trans-
ported in the process is proportional to the amount of re-
moved material, allowing for the calculation of the
porosity for a known thickness of the etched layer. Differ-
ent postetching processes can be used to remove the top
layer in order to improve optical characterization or to in-
crease the pore-size. We used eight samples with different
values of the mean free path. These samples were previ-
ously fabricated for other optical experiments [21-23].
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A summary of the scattering characterization proper-
ties of the investigated samples is shown in Table 1. The
thicknesses were determined from scanning electron mi-
croscope images. The mean free path values were deter-
mined by the standard technique of measuring the linear
total transmission. As a representative, the mean free
path of sample 2 has been determined over the spectral
range of 0.6 to 1.6 um (Fig. 1) by coupling a spectrometer
to an integrating sphere setup. Dependence of the mean
free path on the wavelength is largely due to the nano-
structure of the samples. It also varies from sample to
sample. The magnitude of the nonlinear susceptibility of
porous-GaP for some lattice orientations is comparable to
that of a commercial second-harmonic crystal, such as po-
tassium dihydrogen phosphate (KDP). However, as GaP is
not birefringent, it has no application for conventional
methods of second-harmonic generation.

B. Setup for Measuring Total Radiation

Figure 2 shows a diagram of the integrating sphere setup
that was used for measuring the total second-harmonic
light that is radiated in the forward or the backward di-
rection from a porous-GaP slab. Several gold mirrors
guide the beam vertically into the entrance of a TiOy
coated integrating sphere. The sample can be laid down
at the entrance for transmission measurements or placed
beneath the sphere for reflection measurements. Two pho-
todiodes are positioned at two exit holes of the integrating
sphere. At one exit hole, an amplified silicon detector
(PDA55a—Thorlabs) connected to an oscilloscope
(DL9040L—Yokogawa) measures the second-harmonic
signal after the fundamental infrared light is filtered by a
cold glass filter (KG5). At the other exit hole, a germa-
nium detector (DET10A—Thorlabs) connected to another
channel of the same oscilloscope measures the scattered
fundamental light. In this way, both fundamental and
second-harmonic signals can be measured simulta-
neously.

For a second-harmonic signal to be detectable by nor-
mal silicon detectors, an incident intensity of several gi-
gawatts per centimeters squared is essential. A long pulse
at this intensity will damage GaP, therefore pulses
shorter than nanoseconds with low repetition rates are
needed. The light source we used was a traveling-wave
collinear optical parametric amplifier of super-
fluorescence (TOPAS—Light Conversion) pumped with a

Table 1. Summary of Specifications of the Samples
that are Analyzed in this Paper

Tag L(um) €2, (um) €1,(um) V(V)
1 35.5+1 0.27+0.04 2.49+0.29 14.7
2 43.7x1 0.26+0.03 1.85+0.29 14.7
3 23.5x1 0.26+0.04 2.18+0.24 14.7
4 32x1 0.83+0.06 2.50+0.28 22.5
5 26+1 0.60+0.05 2.22+0.18 11.2
6 83+3 1.10+0.08 4.71+£0.37 10.0
7 126+4 1.24+0.08 3.38+0.48 15.0
8 116+3 1.68+0.11 5.75+0.60 10.0

4V, is the applied electromotive force during the etching process.
Y The measured value of mean free paths €,, and €, are presented at A
=0.65 and 1.3 um, correspondingly; L is the thickness of the porous region.
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Fig. 1. Mean free path of a porous-GaP sample is wavelength-
dependent. As a representative, we plot the mean free path as a
function of vacuum wavelength for sample 2. Similar curves are
also obtained for all samples using total-transmission
measurements.

subpicosecond laser (Hurricane—Spectra Physics) at
800 nm and a repetition rate of 1 kHz. The output central
wavelength could be tuned continuously from
0.55 to 2.2 um with a bandwidth of 5 nm. The pulse was
transform-limited with a duration of 150 fs. The undes-
ired frequencies are filtered out from the output beam by
using a polarizer and a low-pass filter (RG850—
Thorlabs).

For each sample, the radiated second-harmonic light in
the forward and backward directions was measured in a
fundamental-wavelength range of 1.2 to 1.6 um. Before
each measurement, the incident power was checked by a
pyroelectric head and a power meter (Ophir). The trans-
mittance of filters and responsivities and the linearity of
detectors were carefully taken into account before extract-
ing the second-harmonic yield.

Special attention is needed to correct for the transmit-
tance of the nonporous substrate. The total transmittance

Laser units

99-dd

Fig. 2. (Color online) Experimental setup for measuring the to-
tal second-harmonic radiation in forward and backward direc-
tions. The porous-GaP slab is illuminated with a parallel beam of
150 fs infrared pulses. The integrating sphere collects the funda-
mental and the second-harmonic light radiated in all directions
from one side of the sample. The sample position is either on the
top of the sphere for transmission measurements or attached be-
neath the sphere for reflection measurements. A silicon photode-
tector (PD-Si) behind a cold glass filter measures the second-
harmonic signal in the visible range. In parallel, a germanium
photodetector (PD-Ge) measures the transmitted fundamental
light at the infrared range.
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of the porous-bulk interface depends on the refractive in-
dex mismatch at the interfaces and the directional distri-
bution of outgoing diffuse light known as the “escape
function.” We used the escape function presented in [24],
with an effective refractive index of 1.6 +0.2 for the porous
region. This effective refractive index was measured be-
fore based on the filling fractions and escape function
measurements from [22]. Using the Fresnel equations for
transmittance at the substrate-air interface, the total an-
gularly averaged transmittance of the GaP substrate for
these samples has been calculated to be 0.28+0.05, for
which the magnitude of the error is mainly due to the un-
certainty in the effective refractive index of the porous
medium.

C. Setup for Measuring Effusion Function

To investigate the second-harmonic intensity distribution
inside a porous-GaP sponge in greater detail, the second-
harmonic radiation from the side of a cleaved porous-GaP
slab was imaged under a microscope while the slab was
illuminated by a parallel beam of infrared pulses at nor-
mal incidence. We refer to the diffusive energy flux at the
interfaces of the random medium, which can be measured
with our method as the “effusion function.” The measure-
ment of the effusion function is sensitive to details of the
distribution of the second-harmonic source inside the
slab. To test this sensitivity, we calculated the second-
harmonic effusion function for a half-slab numerically
and compared it with the bulk second-harmonic energy
distribution in a slab, predicted by Eq. (13). We observed
that the second-harmonic effusion pattern approximates
the bulk second-harmonic intensity distribution well.
This result suggests that one can get an immediate quali-
tative sense of the second-harmonic energy distribution
from the observation of the second-harmonic effusion
function.

The effusion microscopy setup is shown in Fig. 3. The
incident beam in this setup is a Gaussian infrared beam
of 3 mm in diameter with its center aimed toward the
edge of the sample. A cold glass filter in front of the CCD
camera blocks the fundamental light so that only the vis-
ible second-harmonic light is captured.

O -
@) g
AN

O <

Fig. 3. (Color online) Experimental setup for effusion micros-
copy measurements. The sample consists of a thin porous and
highly scattering layer laying on top of a transparent substrate.
The CCD camera images the second-harmonic signal that is ra-
diated from the narrow cross section of the porous part of the
sample while it is illuminated by a parallel beam of infrared
pulses.
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4. RESULTS

A. Dependence on Incident Power

At an incident wavelength of 1.2 um, where the efficiency
is the highest, the dependence of the second-harmonic
yield on the incident power is measured for several
samples in the forward direction. The fundamental power
is linearly proportional to voltage V|, of the silicon detec-
tor. The second-harmonic power is linearly proportional to
voltage Vy of the germanium detector. The measured re-
lation between output voltages is plotted in Fig. 4. From
this plot a consistent power-law dependence between in-
cident and second-harmonic powers is evident for these
samples. The result of fitting shows a power law Py, % Pg
with @=1.87+0.03. In a second-order nonlinear process
the second-harmonic intensity is proportional to the
square of the incident intensity. The observed deviation of
the experimentally measured « from 2.0 may be a sign of
nonlinear (three photon) absorption inside the porous-
GaP.

B. Effusion Function at Second-Harmonic Frequency
The microscopy setup described in Subsection 3.C has
been used to capture the effusion function at the second-
harmonic frequency. As the incident beam size is much
larger than the slab thickness, the effusion pattern is lat-
erally (parallel to the substrate) invariant. Roughness of
the section due to its porosity and cleaving-defects can
cause fluctuations in the observed intensity. The intensity
distribution is averaged in the lateral direction. The ex-
perimental result is compared with our numeric calcula-
tion of the diffusion model in Fig. 5. The bulk distribution
of the second-harmonic intensity is also plotted for com-
parison.

The measured second-harmonic intensity distribution
qualitatively agrees with the diffusion model. The inten-
sity has a maximum around one third of the slab thick-
ness, as was predicted theoretically in [7]. The largest de-
viation is observed near the edges, which we attribute to
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Fig. 4. Backward-radiated second-harmonic signal Vs, detected
by the silicon detector, is scaled by the sample thickness and plot-
ted for three of the samples versus the signal detected by a ger-
manium detector V,, in bilogarithmic scales. The second-
harmonic power is proportional to V, and shows a power-law
dependence (exponent=1.87+0.03) on the incident power, which
is proportional to V. Numbers in the legend indicate sample tags
as introduced in Table 1.
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Fig. 5. (Color online) Inset, micrograph of the second-harmonic
effusion intensity from a section of the porous-GaP slab while it
is illuminated with a parallel beam of infrared laser pulses from
the left. Brighter regions indicate higher effusion of second-
harmonic light. Outset, the measured second-harmonic intensity
is averaged parallel to the substrate and its peak is normalized
to 1. The result of the experiment (symbols) is plotted versus the
position inside the sample and is compared with the prediction of
the stationary diffusion model (solid curve), found from the nu-
meric calculation with no adjustable fitting parameters. Our the-
oretical value for distribution of the second-harmonic intensity in
the bulk, which is presented in Subsection 2.C, is shown by the
dotted curve. The theoretical fundamental-frequency intensity
distribution inside the slab (dashed curve) is plotted for
comparison.

the stray second-harmonic light that is leaving the other
interfaces of the slab behind the imaging plane.

C. Second-Harmonic Intensity Distribution in Far-Field

The measured value of 7, defined by Eq. (16), has been
plotted versus the optical thickness of samples at various
fundamental wavelengths in Fig. 6. The calculated 7 in
the framework of the stationary diffusion model according
to Eq. (16) is also plotted for comparison. We find a good
agreement between measurement and theory for most of
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Fig. 6. (Color online) Ratio 7 between total second-harmonic
light measured in the backward and the forward direction is plot-
ted versus the optical thickness L/¢;, for various wavelengths
and samples. The stationary diffusion prediction from Subsection
2.C is plotted as a solid curve. We find a good agreement between
theory and measurements. Numbers 1-8 in the legend corre-
spond to the sample numbers introduced in Table 1.
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the samples. Large error bars are mainly due to the un-
certainty in the effective refractive index of the porous
medium.

D. Second-Harmonic Yield

At several incident frequencies, we have measured the to-
tal second-harmonic intensity radiated from the sample.
Extracting the absolute value of the conversion rate from
the second-harmonic intensity measurements is limited
by a large systematic shift that arises from uncertainties
in the response function of the setup. However, this sys-
tematic shift does not affect the relative values. Therefore
for testing theoretical models, we consider relative trends
rather than the absolute values.

To check whether the homogeneous nonlinear back-
ground model of Kravtsov et al. [6] can describe our data,
the normalized yield vy defined by Eq. (17) has been plot-
ted versus the ratio ¢5,/L.. This plot is shown in Fig. 7(a)
for all samples and measured wavelengths. For this plot
the optical dispersion relation and the nonlinear polariz-
ability of the bulk GaP has been taken from measure-
ments of [25] and calculations of [26], respectively. Our
measurements show a trend opposite to the homogeneous
background model [6]. For an individual sample, the yield
increases with an increasing mean free path relative to
the coherence length. The incremental trend is different
from sample to sample, which indicates that ¢5,/L, is not
the universal parameter for describing the conversion
rate in our kind of samples.

For the normalized yield plotted versus the scattering
parameter at the fundamental frequency %;,¢1,, most of
the measurement points for all the samples are close to a
single curve. The consistent trend of an increasing yield
with decreasing k;,¢1, occurs both when comparing dif-
ferent wavelengths in a single sample and when compar-
ing different samples at the same wavelength. We have
fitted these data to a power-law function and found an av-
erage exponent of -2.0+0.3.

5. CONCLUSION

Using a microscopy technique, we have measured the
second-harmonic intensity at the side of a cleaved-slab
during its illumination with a Gaussian beam. We have
observed that the internal distribution of second-
harmonic intensity predicted by the diffusion model
agrees with the experiment. The total intensity radiated
in the backward direction and the backward—forward ra-
tio of the second-harmonic intensity has also been mea-
sured for a number of samples. The measured backward-—
forward ratios show good agreement with the results of
the diffusion model.

For describing our distribution measurements, we have
presented a diffusion model for second-harmonic intensity
distribution in a strongly scattering nonlinear material in
which the diffused fundamental intensity is converted
into its second-harmonic via the process of degenerate
two-photon mixing. The second-harmonic light also dif-
fuses in the scattering medium. The internal distribution
and the outgoing intensity in forward and backward di-
rections of a slab are derived based on the diffusion equa-
tion for light and extrapolated boundary conditions. As
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Fig. 7. (Color online) (a) Second-harmonic normalized yield as
defined in Eq. (17) is plotted versus the ratio of the mean free
path at the second-harmonic frequency to the coherence length
€y,/L, for various wavelengths and samples. The normalized
yield is defined as the total second-harmonic intensity generated
in the backward direction divided by the square of incident in-
tensity and the thickness of the slab and normalized for fre-
quency dependent material properties of GaP. The dotted curve
shows the value calculated from the theoretical model of
Kravtsov et al. [6] plotted for comparison. No agreement has
been found between their theory and our measurements. Num-
bers 1-8 in the legend correspond to the sample numbers intro-
duced in Table 1. (b) Same data of (a) is plotted versus the scat-
tering strength at the fundamental frequency. The overall trend
can be described by a power-law relation, y«(kq,l1,)? B=
—2.0+0.3, which is shown by the dashed curve.

was reported previously [6,7], the diffusion theory pre-
dicts that in the slab geometry, the total generated
second-harmonic intensity increases linearly with the
thickness of the slab and depends quadratically on the ex-
trapolation ratio at the fundamental frequency. As a re-
sult of the diffusion model, the ratio 7 between the
second-harmonic radiated intensity in backward and for-
ward directions is independent of the mesoscopic conver-
sion efficiency and is only given by the slab-geometry and
boundary conditions. Therefore, 7 provides a useful test
for the diffusion model, irrespective of the microscopic de-
tails. For a sufficiently thick slab, 7 approaches 3 as pre-
dicted by the diffusion theory. This result has been con-
firmed by our measurements.

Faez et al.

Although current diffusion models describe well the
distribution of the second-harmonic intensity, the overall
conversion rate cannot be described by the available theo-
ries. We have found a consistent power-law dependence
between the second-harmonic yield and the scattering pa-
rameter at the fundamental frequency, y=(k1,{1,)?, with
an exponent of B=-2.0+0.3.
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