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resonances due to the optical counterpart of Anderson localization. By making use of different localization lengths at the fundamental and
at the second harmonic frequencies, we predict a conversion efficiency that is four orders of magnitude higher than a bulk material and
even one order of magnitude higher than an ideal phase matched slab of the same size. The method is highly insensitive to fabrication
tolerances, and provides excellent angle tunability. [DOI: 10.2971/jeos.2006.06021]

Keywords: Nonlinear, random structures

1 I n t r o d u c t i o n

Nonlinear properties of micro- and nano- structured materials
are currently under intense investigation because of their abil-
ity to enhance the effective nonlinear response of a medium.
Particular attention has been devoted to the study of second
harmonic (SH) generation in photonic crystals (PC) [1]–[3]. In-
side periodic structures, the nonlinear interaction between the
fundamental (FF) and the SH fields is a phase sensitive pro-
cess, governed by the fulfillment of the so called quasi phase
matching (QPM) condition: k2ω = 2kω + G, where G is the
reciprocal lattice vector. These conditions are easier to achieve
with respect to phase matching conditions in bulk media, thus
allowing access to the high nonlinearity of mismatched semi-
conductors such as GaAs [4]. Finite size PCs also exhibit in-
teresting properties due to cavity effects that become more in-
tense closer to the band edge of the photonic structure, where
the enhancement of SH generation has been theoretically pre-
dicted and experimentally verified [5, 6].

For particular geometries, the effect of field’s localization in
finite structure can be much more relevant than the fulfill-
ment of QPM conditions [7]. In regimes where QPM is not
crucial, one can obtain high efficiency by properly tailoring
the structure in order to have high-field localization and good
overlap between the FF and SH fields. Nevertheless, from a
practical point of view, high enhancements factors are achiev-
able if the structure is grown with a high degree of accuracy.
This means that very precise control of layer thickness is re-

quired, as reported in Ref. [8]. Even a small deviation from
perfect periodicity causes line broadening of the resonances,
loss of double resonant conditions, and decrease of field lo-
calization. The overall effect is a dramatic decrease of second
harmonic production. In Ref. [8] a detailed study on the effect
of weak disorder in one dimensional (1-D) photonic crystals
is exploited to find conditions in which the disorder may be
used to enhance the non linear process, rather than diminish
it. Recently it has also been shown that random QPM can hap-
pen in bulk polycrystalline isotropic nonlinear materials [9].
Enhancement of second harmonic generation in strongly scat-
tering porous GaP was experimentally investigated by V.A.
Mel’nikov et al. in Ref. [10]. Their results indicate the impor-
tance of scattering effects in non-linear optical processes in
strongly scattering media but the complexity of the system
makes it difficult to have a deep insight on the phenomenon
and a quantitative theoretical analysis.

A simpler and easier to understand scenario is presented if
a structure with completely random layer thicknesses is con-
sidered. In this paper we show that, for 1-D systems, it is
possible to find out the crucial parameters and the criteria to
get high enhancement factors of SHG. Transmission spectra
of randomly generated, finite size, multilayer stacks are char-
acterized by the presence of randomly distributed transmis-
sion peaks. They originate from resonances created by local-
ized modes inside the sample. This effect is the optical ana-
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logue of Anderson localization, originally studied for elec-
trons in disordered conductors [11]. In 1-D systems, Ander-
son localization effects manifest themselves provided sample
size is large compared to the localization length, which de-
pends on frequency and the degree of disorder. Even in the
presence of localized Anderson states, so-called “necklace”
modes [12, 13] can also appear. They are characterized by al-
most unitary transmission, and are particular relevant to finite
size structures. A necklace state is obtained when more than
one resonance exists in the sample at very similar frequencies.

Here we show that it is possible to obtain highly efficient
second harmonic generation in randomly patterned dielectric
materials. Our results demonstrate that one can take advan-
tage of a combination of strongly and weakly confined local-
ized modes, as well as optical necklace states, for resonant sec-
ond harmonic generation, even if the material is completely
disordered. The converted SH energy is even an order of mag-
nitude higher than that of the ideal case of a perfectly phase-
matched slab (etalon) of the same size.

2 L I N E A R P R O P E R T I E S : L O -
C A L I S E D S T A T E S A N D N E C K -
L A C E S T A T E S

We consider a structure composed of two different dielectric
materials, with “unit” layer optical thickness having a mean
value of λ0/4 (with λ0 = 1µm) with 10% Gaussian fluctu-
ations. The low index material (L) is assumed to be linear
and non-dispersive. The high index material (H) has linear
chromatic dispersion and is also nonlinear. A stronger de-
gree of disorder is introduced by randomly choosing the se-
quence of layers, assuming that each layer has 50% of prob-
ability to be H or L. Data for materials used in our calcula-
tion are the same as those of Ref.[14], namely nL = 1.45 and
n2

H = 4.9048 + 0.11768/(λ2 − 0.0475) − 0.027169λ2 dielectric
constant of LiNbO3 ordinary wave).
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FIG. 1 Transmission spectra at normal incidence (wavelength ranges in the near in-

frared (a) and in the visible (b)) for a 250 layer periodic structure (thin dashed line)

and for a random structure (thick line).

In Figures 1a and 1b, we show a typical transmission spec-
trum for a randomly generated structure, obtained by alter-
nating 250 “unit” layers (thick line) for different wavelength
regions. We compare this to the spectrum of a perfect 250-layer
periodic structure (thin, dashed line), and note the following
analogies: inside the gap, (Figure 1a) of the periodic struc-
ture, the random structure’s spectrum exhibits an almost zero
transmittance with the exception of a few, very narrow reso-
nances. This appears to be the right tuning wavelength range
for the pump field, because sharp resonances in the transmis-
sion spectrum are related to high field localization inside the
sample. On the other hand, the features of transmission spec-
tra in the SH wavelength range (0.4 to 0.6 µm) suggest a totally
different, much more interesting and useful behavior, char-
acterized by very closely spaced, high, and relatively broad
transmission resonances (Figure 1b). We will later focus on the
transmission properties of the SH wavelength range.
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FIG. 2 a) FF field profile square modulus as a function of wavelength inside the struc-

ture. We note that both Anderson localized states and necklace states are present.

b) SH field profile square modulus; there is a high density of weakly confined states

available.

In Figures 2a and 2b we plot the field intensity (logarithmic
scale) as a function of the position inside the structure for the
pump and SH wavelength ranges. We note that in the pump
wavelength range there are several highly localized states (for
example the state at approximately λ = 1.075µm) where local
intensities may be magnified with respect the input intensities
up to three orders of magnitude. We also note the presence of
necklace states (approximately at λ = 1.09µm for example)
due to coupling of two or more resonant states at very close
wavelengths. On the other hand, the SH wavelength range
is characterized by high transmittance but weakly confined
states. This different behavior of the FF and SH fields is due to
the large difference in the respective localization lengths. We
calculated the localization length at λ0 = 1µm and at λo/2 by
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using the formula [13]:

〈ln T〉 = − L
ξ

, (1)

where L is the length of the sample, T is the modulus of the
transmission coefficient, the brackets denote an average over
many realizations of the disorder, and ξ is the localization
length. We numerically performed an average over 1000 dif-
ferent realizations. The calculated localization length at the FF
is ξFF ∼ 7µm, while at the SH ξSH ∼ 37µm. This means that
the structure is optimized for maximum scattering at λ0 =
1µm, where the localization length has its minimum value and
mode confinement is highest. In contrast, at λ0/2, ξSH would
diverge if we neglected material dispersion and the 10% Gaus-
sian disorder in the layer thickness. From the point of view of
localization length, at λ0/2 only the 10% Gaussian disorder
introduced in layer thickness, matters. Therefore, the localiza-
tion length in this range is much longer than in the FF wave-
length regime. We note that it is actually of the same order
of the total sample thickness (approx. 35.7µm), which is con-
sistent with the observed absence of localized modes in this
regime (Figure 2b).

3 N O N - L I N E A R P R O P E R T I E S : E N -
H A N C E M E N T O F S E C O N D H A R -
M O N I C G E N E R A T I O N

In order to investigate SH generation we extended the model
presented in Ref. [5] to the case of an arbitrary choice of
the incidence angle of the pump in the plane of incidence
x − z perpendicular to the layers’ interface planes. For a given
monochromatic plane wave characterized by an angular fre-
quency ω and a value of the x-component of the wavevector
(kx) the field is described as a superposition of left to right
(LTR) and right to left (RTL) linear solution of Helmoltz equa-
tions normalised with respect to a unitary input field with
complex envelope functions A+

n (z) and A−
n (z) as:

En (z, x) = A+
n (z)Φ+

n (z) exp (ikx
nx)

+A−
n (z)Φ−

n (z) exp (ikx
nx) (2)

where n=FF, SH; and Φ±
n (z) can be calculated using standard

matrix transfer techniques by applying the proper boundary
conditions to all field’s components. We note that for plane
waves the complex envelope functions A+

n (z) and A−
n (z) can

only be function of the z variable in order to keep the proper
wave front plane. Following the multiple scale expansion pro-
cedure shown in [5] with the vectorial fields expressed as in
Eq.(2) and focusing our attention to the process of collinear sec-
ond harmonic generation from a forward propagating unde-
pleted pump, we arrive to a formula for the envelopes of the
SH generated field in forward A+(L) and backward A−(0)
directions:

A+
SH(L) =

iωL
(

A+
FF(0)

)2
[
Γ(+,+)

(SH,+) p(−,−)
SH − Γ(+,+)

(SH,−) p(+,−)
SH

]
c
[

p(+,+)
SH p(−,−)

SH − p(+,−)
SH p(−,+)

SH

] ;

(3a)

A−
SH(L) =

−iωL
(

A+
FF(0)

)2
[
Γ(+,+)

(SH,−) p( +,+)
SH − Γ(+,+)

(SH,+) p(−,+)
SH

]
c
[

p(+,+)
SH p(−,−)

SH − p(+,−)
SH p(−,+)

SH

] ;

(3b)
where z = 0 znd z = L are the coordinates of the first and the
last interface ( being L the total length of our structure) and :

p(k,l)
SH =

−ic
2ωSH L

∫ L

0

(
Φk∗

SH · d
dz

Φl
SH

)
dz; for k, l=+,- (4)

and

Γ(k,l)
(SH,j) =

i
L

∫ L

0

(
Φ

j∗
SH · d̂(2) : Φk

FF · Φl
FF

)
dz; for k, l, j=+,-.

(5)

Sustituting Eqs.(3a,3b) into Eq.(2) it is possible to calculate
the outgoing SH field. Assuming a tunable CW pump, and
sweeping the wavelength range of interest, we calculate the
spectrum of the generated second harmonic signal. We de-
pict the spectrum of the generated SH energy as a function
of pump wavelength in Figure 3 (thin solid line).
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FIG. 3 Second harmonic energy vs. pump’s wavelength generated by our sample (solid

thin line) compared to the generated second harmonic from an etalon made of the

same material and of the same length (solid thick line) and the same etalon for an

ideal perfect phase-matched material.

We note that there are high peaks of SH generation when the
pump is tuned at a wavelength corresponding to a localized
Anderson mode, and the SH is tuned to a non-localized high
transmittance mode. Indeed, these modes are efficiently cou-
pled with the output of the structure and the generated sec-
ond harmonic signal can easily exit the structure. At the same
time, the pump is strongly localized inside a portion of the
structure, where the nonlinear process is enhanced. The high
transmission states available to the SH field make it possible
to have a high probability for a given Anderson pump state to
transfer energy to the second harmonic mode. Upon increas-
ing the system size, Anderson modes occur with increasing in-
ternal energy density and decreasing bandwidth. This means
that upon increasing the system size the production of sec-
ond harmonic generation increases. However, the chance of
obtaining overlap between the fundamental and second har-
monic frequency decreases.
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Finally, we compared the efficiency of our structure with the
unpatterned, nonlinear slab of the same thickness, and with
an ideal perfectly phase matched bulk. In both cases we con-
sidered the interference effect due to multiple reflections re-
sulting from the refractive index discontinuity at the input
(air/nH) and output (nH/air) parallel interfaces. We note that
the SH production in the non phase matched single slab (solid
thick line) is strongly affected by the phase mismatch which
would give almost zero signal when the slab length is equal to
an even number of coherence lengths. Fast oscillations are due
to superposition of the modulation of the linear transmittance
at pump and SH wavelengths. Out of resonance, local phase
matching conditions govern the nonlinear dynamics also for
the random structure (solid thin line). As expected, we find
that the average SH signal generated by our structure over the
given wavelength range is of the same order as the signal of an
unmatched slab. Nevertheless, we note that, for some wave-
lengths, the SH generation may be enhanced by 3-4 orders
of magnitude with respect to its average value. Finally, we
observe enhancements of SH production of over an order of
magnitude with respect to an ideal, perfectly phase matched
etalon made of the same nonlinear material of the same length
as the structure (dashed line). Due to the small size of our
structures, overall conversion efficiencies might be not as high
as in long phase matched birefringent crystals or QPM waveg-
uides. Nevertheless the structures we propose have a high ef-
ficiency versus size ratio and are interesting for applications
where miniaturized and integrated devices are required.

Resonant conditions for SH generation can generally be found
easily if the degree of disorder and the total thickness of the
structure are properly tailored. Obviously, different realiza-
tions, or “codes”, produce different spectra; Nevertheless the
fact that localization lengths at FF and SH regimes are differ-
ent is a statistical property as shown in Eq.(1). Thus the spec-
tral behavior in terms of probability to find an Anderson lo-
calized state for the pump and an allowed non localized state
for second harmonic are the same. The rule of thumb is to cal-
culate the localization lengths at FF and SH by averaging over
many realizations of the disorder and choose the total length
of the structure so that localization length at the FF field is
shorter than the structure (Anderson localized states appear)
but localization length at SH is longer or comparable to the
structure size in order to have high density of allowed, non
localized, high transmittance states. For every realizations en-
hanced SH generation will be found at different wavelengths
with respect to the ones showed in the example. This is usu-
ally not a problem for applications where a tunable pump is
considered. If we seek SH generation at a specific wavelength,
some efforts are required in order to optimize the device.

Moreover, the high density of allowed states that display uni-
tary transmission in the SH wavelength range makes it possi-
ble to change the incidence angle of the pump in order to tune
it at a desired, highly localized state, thus maintaining good
resonant SH generation, as shown in Figure 4.
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FIG. 4 Total second harmonic generated energy as a function of pump wavelength and

incidence angle. We note high angle tunability of the pump.

Changing the pump incidence angle from 0 to 40 degrees
causes the second harmonic peaks to blueshift, keeping high
values of enhancement with respect to the background level.
Switching between different modes, we have a tunability
range of more than 100 nm. This remarkable property adds
flexibility in terms of tunability and fabrication sensitivity to
this new kind of devices.

4 C O N C L U S I O N S

In conclusion, we have proposed a new method to achieve
high enhancements of second harmonic generation using ran-
dom layered structured. This method does not rely on phase
matching, is highly insensitive to fabrication tolerances, and it
provides excellent tunability in both incident angle and wave-
length. It is based on the existence of both highly confined An-
derson localized modes and weakly confined modes in finite
random structures. The efficiency is enhanced by more than
4 orders of magnitude with respect to nonlinear bulk mate-
rial of the same size, and by more than one order of magni-
tude compared to what can be obtained from an ideally phase
matched bulk material. The authors wish to acknowledge the
NoE “Phoremost” and the CNR-CNRS agreement for partial
financial support.
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