275 research outputs found

    Application of Electrochemical Impedance Spectroscopy on Different Battery Circuits

    Get PDF
    For the operation of a battery pack, the cell state estimation plays a central role. For that, enough information about the current charge condition (SoC, state of charge) and the health status (SoH, state of health) of the individual cells or cell strings must be available. One way to draw out conclusions about the state of charge and health provides the electrochemical impedance spectroscopy (EIS) [1]. The test cells are thereby stimulated with an alternating current signal, and the resulting voltage signal is detected. These results in cell impedances, which are addicted to the signal frequencies and the respective cell states. This poster shows an experimental platform which uses the EIS to detect asymmetries in SoC and/or SoH on circuited cells. For that, the behavior of the amplitudes and frequencies of the signals should be analyzed, because for the calculation of the precise impedance, these factors are crucial. Thereby the required alternating current and voltage signals are acquired and analyzed separately for each single cell. As cell type lithium iron-phosphate round cells of the size 18650 are used. The investigations are made on a series circuit (Fig.1) made up of three cells and on a parallel circuit made up of two strings, each having two cells in series. It shows that both a series and a parallel connection within the working range the experimental platform impedances of individual cells can be determined. For these cases, differences in state of charge and state of health can be highlighted and assigned to the respective cells

    High-Sensitivity Measurement of 3He-4He Isotopic Ratios for Ultracold Neutron Experiments

    Get PDF
    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of 3He to 4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10e-14 level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of 3He/4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude.Comment: 11 pages, 10 figure

    Influence of aviation fuel composition on the formation and lifetime of contrails — a literature review

    Get PDF
    The question of how aviation fuel composition affects the formation and lifetime of contrails is a complex one. Although the theory regarding initial contrail formation is well-founded in thermodynamics and proven to be correct by measurements, there remain large uncertainties in terms of persistent contrails forming contrail cirrus. These originate both from processes which are not yet fully understood and from the complexity of quantifying the many factors of influence on their effect on climate. There is an extended cause-effect chain from fuel composition through its combustion and consequential emissions, to contrail formation and their spreading in the atmosphere, and microphysical and optical properties. These properties affect the lifetime and radiative effect of single contrails to the global and multi-annual average of the radiative effects of all contrails, and thus eventually to their climate impact. This problem extends over 17 orders of magnitude in space and time, from the scales of single molecules (about 0.1 nm) and their elementary interactions (say, 1 ns) to the global scales of climate (say, 10,000 km and 10-30 years). It is not possible to cover such a vast range with a single numerical model or with relatively few measurements

    High-sensitivity measurement of ^3He−^4He isotopic ratios for ultracold neutron experiments

    Get PDF
    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of ^3He to ^4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10^(−14) level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of ^3He/^4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude

    Using AMF inoculum to improve the nutritional status of Prunella vulgaris plants in green roof substrate during establishment

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) have been shown to improve the growth, health, nutrient uptake, flowering and drought tolerance of many terrestrial plant species. Green roofs are generally deficient in nutrients, organic matter and water, and therefore AMF could be extremely beneficial in improving green roof plant performance. Despite this there is a lack of empirical research into artificially introducing AMF into green roof substrates. In this study, a commercial AMF inoculum was applied to Prunella vulgaris green roof plugs grown in small modules on a flat roof in Sheffield, UK. The modules were filled with commercial green roof substrate (80% small particle sized crushed brick, 20% green waste compost) to a depth of 100 mm. AMF inoculum was applied as four treatments: (i) directly with plug, (ii) mixed evenly into surrounding substrate, (iii) split between plug and substrate, (iv) control treatment with no inoculum added. Significantly greater levels of AMF colonisation of P. vulgaris roots was detected in all AMF treatments compared to the control. Low levels of AMF colonisation of P. vulgaris roots were also observed in the control treatment, confirming that low levels of AMF inoculum were present in this commercial substrate. Shoot phosphorous (P) concentration was improved in all AMF treatments, however there was no significant effect of any AMF treatment on P. vulgaris growth rate or biomass production. The highest AMF colonisation of P. vulgaris roots was observed when AMF inoculum was directly added to just the plug. Promisingly, P. vulgaris flowering time at the end of the first growing season was also extended in the plug AMF treatment only. This study has confirmed that commercial AMF inoculum can be used to successfully colonise plants and introduce AMF networks into green roof substrate. Although AMF inoculum was naturally present in the substrate used in this study, levels were extremely low, and unlikely to have any significant effect on plants. This study indicates that care should be taken in the use of AMF inoculum on green roofs, as the growth and health benefits of AMF are not always immediately apparent for green roof plants. In addition much more research is required in order to fully assess the extent of the benefits of AMF on green roof plants and to determine if their use can be financially viable

    High-sensitivity measurement of ^3He−^4He isotopic ratios for ultracold neutron experiments

    Get PDF
    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of ^3He to ^4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10^(−14) level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of ^3He/^4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude
    • …
    corecore