72 research outputs found

    Proteoglycans and osteolysis.

    Get PDF
    Osteolysis is a complex mechanism resulting from an exacerbated activity of osteoclasts associated or not with a dysregulation of osteoblast metabolism leading to bone loss. This bone defect is not compensated by bone apposition or by apposition of bone matrix with poor mechanical quality. Osteolytic process is regulated by mechanical constraints, by polypeptides including cytokines and hormones, and by extracellular matrix components such as proteoglycans (PGs) and glycosaminoglycans (GAGs). Several studies revealed that GAGs may influence osteoclastogenesis, but data are very controversial: some studies showed a repressive effect of GAGs on osteoclastic differentiation, whereas others described a stimulatory effect. The controversy also affects osteoblasts which appear sometimes inhibited by polysaccharides and sometimes stimulated by these compounds. Furthermore, long-term treatment with heparin leads to the development of osteoporosis fueling the controversy. After a brief description of the principal osteoclastogenesis assays, the present chapter summarizes the main data published on the effect of PGs/GAGs on bone cells and their functional incidence on osteolysis

    Ewing sarcoma from molecular biology to the clinic

    Get PDF
    In Europe, with an incidence of 7.5 cases per million, Ewing sarcoma (ES) is the second most common primary malignant bone tumor in children, adolescents and young adults, after osteosarcoma. Since the 1980s, conventional treatment has been based on the use of neoadjuvant and adjuvant chemotherapeutic agents combined with surgical resection of the tumor when possible. These treatments have increased the patient survival rate to 70% for localized forms, which drops drastically to less than 30% when patients are resistant to chemotherapy or when pulmonary metastases are present at diagnosis. However, the lack of improvement in these survival rates over the last decades points to the urgent need for new therapies. Genetically, ES is characterized by a chromosomal translocation between a member of the FET family and a member of the ETS family. In 85% of cases, the chromosomal translocation found is (11; 22) (q24; q12), between the EWS RNA-binding protein and the FLI1 transcription factor, leading to the EWS-FLI1 fusion protein. This chimeric protein acts as an oncogenic factor playing a crucial role in the development of ES. This review provides a non-exhaustive overview of ES from a clinical and biological point of view, describing its main clinical, cellular and molecular aspects

    Zinc Supplements and Bone Health: The Role of the RANKL-RANK Axis as a Therapeutic Target

    Get PDF
    Background: To this day, empirical data suggests that zinc has important roles in matrix synthesis, bone turnover, and mineralization and its beneficial effects on bone could be mediated through different mechanisms. The influence of zinc on bone turnover could be facilitated via regulating RANKL/RANK/OPG pathway in bone tissue. Therefore, the aim of the study was to conduct a review to investigate the possible effect of the zinc mediated bone remodeling via RANKL/RANK/OPG pathway. Methods: A comprehensive systematic search was performed in MEDLINE/PubMed, Cochrane Library, SCOPUS, and Google Scholar to explore the studies investigating the effect of zinc as a bone remodeling factor via RANKL/RANK/OPG pathway regulation. Subsequently, the details of the pathway and the impact of zinc supplements on RANKL/RANK/OPG pathway regulation were discussed. Results: The pathway could play an important role in bone remodeling and any imbalance between RANKL/RANK/OPG components could lead to extreme bone resorption. Although the outcomes of some studies are equivocal, it is evident that zinc possesses protective properties against bone loss by regulating the RANKL/RANK/OPG pathway. There are several experiments where zinc supplementation resulted in upregulation of OPG expression or decreases RANKL level. However, the results of some studies oppose this. Conclusion: It is likely that sufficient zinc intake will elicit positive effects on bone health by RANKL/RANK/OPG regulation. Although the outcomes of a few studies are equivocal, it seems that zinc can exert the protective properties against bone loss by suppressing osteoclastogenesis via downregulation of RANKL/RANK. Additionally, there are several experiments where zinc supplementation resulted in upregulation of OPG expression. However, the results of limited studies oppose this. Therefore, aside from the positive role zinc possesses in preserving bone mass, further effects of zinc in RANKL/RANK/OPG system requires further animal/human studies. © 2019 Elsevier Gmb

    Table S7: Osteopontin and osteocalcin protein levels

    Get PDF
    Background The receptor activator of nuclear factor kappa-B (RANK)/RANK ligand/osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. OPG has been used systemically in the treatment of bone diseases. In searching for more effective and safer treatment for bone diseases, we investigated newly formulated OPG-chitosan complexes, which is prepared as a local application for its osteogenic potential to remediate bone defects. Methods We examined high, medium and low molecular weights of chitosan combined with OPG. The cytotoxicity of OPG in chitosan and its proliferation in vitro was evaluated using normal, human periodontal ligament (NHPL) fibroblasts in 2D and 3D cell culture. The cytotoxicity of these combinations was compared by measuring cell survival with a tetrazolium salt reduction (MTT) assay and AlamarBlue assay. The cellular morphological changes were observed under an inverted microscope. A propidium iodide and acridine orange double-staining assay was used to evaluate the morphology and quantify the viable and nonviable cells. The expression level of osteopontin and osteocalcin protein in treated normal human osteoblast cells was evaluated by using Western blot. Results The results demonstrated that OPG in combination with chitosan was non-toxic, and OPG combined with low molecular weight chitosan has the most significant effect on NHPL fibroblasts and stimulates proliferation of cells over the period of treatment

    Mechanisms of Resistance to Conventional Therapies for Osteosarcoma

    No full text
    Osteosarcoma (OS) is the most common primary bone tumor, mainly occurring in children and adolescents. Current standard therapy includes tumor resection associated with multidrug chemotherapy. However, patient survival has not evolved for the past decades. Since the 1970s, the 5-year survival rate is around 75% for patients with localized OS but dramatically drops to 20% for bad responders to chemotherapy or patients with metastases. Resistance is one of the biological processes at the origin of therapeutic failure. Therefore, it is necessary to better understand and decipher molecular mechanisms of resistance to conventional chemotherapy in order to develop new strategies and to adapt treatments for patients, thus improving the survival rate. This review will describe most of the molecular mechanisms involved in OS chemoresistance, such as a decrease in intracellular accumulation of drugs, inactivation of drugs, improved DNA repair, modulations of signaling pathways, resistance linked to autophagy, disruption in genes expression linked to the cell cycle, or even implication of the micro-environment. We will also give an overview of potential therapeutic strategies to circumvent resistance development

    Origin and Therapies of Osteosarcoma

    No full text
    Osteosarcoma (OS) is the most frequent primary bone tumor, mainly affecting children and young adults. Despite therapeutic advances, the 5-year survival rate is 70% but drastically decreases to 20–30% for poor responders to therapies or for patients with metastasis. No real evolution of the survival rates has been observed for four decades, explained by poor knowledge of the origin, difficulties related to diagnosis and the lack of targeted therapies for this pediatric tumor. This review will describe a non-exhaustive overview of osteosarcoma disease from a clinical and biological point of view, describing the origin, diagnosis and therapies

    Implication of the p53-Related miR-34c, -125b, and -203 in the Osteoblastic Differentiation and the Malignant Transformation of Bone Sarcomas

    No full text
    International audienceThe formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression

    The p53 Family Members p63 and p73 Roles in the Metastatic Dissemination: Interactions with microRNAs and TGFβ Pathway

    No full text
    TP53 (TP53), p73 (TP73), and p63 (TP63) are members of the p53 transcription factor family, which has many activities spanning from embryonic development through to tumor suppression. The utilization of two promoters and alternative mRNA splicing has been shown to yield numerous isoforms in p53, p63, and p73. TAp73 is thought to mediate apoptosis as a result of nuclear accumulation following chemotherapy-induced DNA damage, according to a number of studies. Overexpression of the nuclear ΔNp63 and ΔNp73 isoforms, on the other hand, suppresses TAp73’s pro-apoptotic activity in human malignancies, potentially leading to metastatic spread or inhibition. Another well-known pathway that has been associated to metastatic spread is the TGF pathway. TGFs are a family of structurally related polypeptide growth factors that regulate a variety of cellular functions including cell proliferation, lineage determination, differentiation, motility, adhesion, and cell death, making them significant players in development, homeostasis, and wound repair. Various studies have already identified several interactions between the p53 protein family and the TGFb pathway in the context of tumor growth and metastatic spread, beginning to shed light on this enigmatic intricacy

    Osteoprotegerin, a new actor in vasculogenesis, stimulates endothelial colony-forming cells properties

    No full text
    Background: Osteoprotegerin (OPG), a soluble receptor of the tumour necrosis factor family, and its ligand, the receptor activator of nuclear factor-κB ligand (RANKL), are emerging as important regulators of vascular pathophysiology. Objectives: We evaluated their effects on vasculogenesis induced by endothelial colony-forming cells (ECFC) and on neovessel formation in vivo. Methods: Effects of OPG and RANKL on in vitro angiogenesis were evaluated after ECFC incubation with OPG or RANKL (0–50 ng mL−1). Effects on microvessel formation were evaluated with an in vivo murin Matrigel plug assay. Vascularization was evaluated by measuring plug hemoglobin and vascular endothelial growth factor (VEGF)-R2 content 14 days after implantation. Results: We found that ECFC expressed OPG and RANK but not RANKL mRNA. Treatment of ECFC with VEGF or stromal cell-derived factor-1 (SDF-1) upregulated OPG mRNA expression. OPG stimulated ECFC migration (P < 0.05), chemotaxis (P < 0.05) and vascular cord formation on Matrigel® (P < 0.01). These effects were correlated with SDF-1 mRNA overexpression, which was 30-fold higher after 4 h of OPG stimulation (P < 0.01). OPG-mediated angiogenesis involved the MAPK signaling pathway as well as Akt or mTOR cascades. RANKL also showed pro-vasculogenic effects in vitro. OPG combined with FGF-2 promoted neovessel formation in vivo, whereas RANKL had no effect. Conclusions: OPG induces ECFC activation and is a positive regulator of microvessel formation in vivo. Our results suggest that the OPG/RANK/RANKL axis may be involved in vasculogenesis and strongly support a modulatory role in tissue revascularization
    • …
    corecore