557 research outputs found

    Measurement of the 70Ge(n,γ) cross section up to 300 keV at the CERN n_TOF facility

    Get PDF
    Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on 70Ge, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n_TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT =5 keV tokT =100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sectionsareinagreementwithWalterandBeer(1985)overmostoftheneutronenergyrangecovered,whilethey aresystematicallysmallerforneutronenergiesabove150keV.Wehavecalculatedisotopicabundancesproduced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60–80.Austrian Science Fund J3503Adolf Messer Foundation ST/M006085/1European Research Council ERC2015-StGCroatian Science Foundation IP-2018-01-857

    NuGrid stellar data set - III. Updated low-mass AGB models and s-process nucleosynthesis with metallicities Z = 0.01, Z = 0.02, and Z = 0.03

    Get PDF
    © 2019 Oxford University Press. All rights reserved. The production of the neutron-capture isotopes beyond iron that we observe today in the Solar system is the result of the combined contribution of the r-process, the s-process, and possibly the i-process. Low-mass asymptotic giant branch (AGB) (1.5 10 M☉) stars have been identified as the main site of the s-process. In this work we consider the evolution and nucleosynthesis of low-mass AGB stars. We provide an update of the NuGrid Set models, adopting the same general physics assumptions but using an updated convective-boundary-mixing model accounting for the contribution from internal gravity waves. The combined data set includes the initial masses MZAMS/M☉ = 2, 3 for Z = 0.03, 0.02, 0.01. These new models are computed with the MESA stellar code and the evolution is followed up to the end of the AGB phase. The nucleosynthesis was calculated for all isotopes in post-processing with the NuGrid mppnp code. The convective-boundary-mixing model leads to the formation of a 13C-pocket three times wider compared to the one obtained in the previous set of models, bringing the simulation results now in closer agreement with observations. Using these new models, we discuss the potential impact of other processes inducing mixing, like rotation, adopting parametric models compatible with theory and observations. Complete yield data tables, derived data products, and online analytic data access are provided

    Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation

    Get PDF
    Authors are indebted with Ms Monica Glebocki for extensive editing of the manuscriptBackground: Periodontitis, the most prevalent chronic inflammatory disease, has been related to cardiovascular diseases. Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. The aim of this research was to study the role of autophagy in peripheral blood mononuclear cells from patients with periodontitis and gingival fibroblasts treated with a lipopolysaccharide of Porphyromonas gingivalis. Autophagy-dependent mechanisms have been proposed in the pathogenesis of inflammatory disorders and in other diseases related to periodontitis, such as cardiovascular disease and diabetes. Thus it is important to study the role of autophagy in the pathophysiology of periodontitis. Methods: Peripheral blood mononuclear cells from patients with periodontitis (n = 38) and without periodontitis (n = 20) were used to study autophagy. To investigate the mechanism of autophagy, we evaluated the influence of a lipopolysaccharide from P. gingivalis in human gingival fibroblasts, and autophagy was monitored morphologically and biochemically. Autophagosomes were observed by immunofluorescence and electron microscopy. Results: We found increased levels of autophagy gene expression and high levels of mitochondrial reactive oxygen species production in peripheral blood mononuclear cells from patients with periodontitis compared with controls. A significantly positive correlation between both was observed. In human gingival fibroblasts treated with lipopolysaccharide from P. gingivalis, there was an increase of protein and transcript of autophagy-related protein 12 (ATG12) and microtubule-associated protein 1 light chain 3 alpha LC3. A reduction of mitochondrial reactive oxygen species induced a decrease in autophagy whereas inhibition of autophagy in infected cells increased apoptosis, showing the protective role of autophagy. Conclusion: Results from the present study suggest that autophagy is an important and shared mechanism in other conditions related to inflammation or alterations of the immune system, such as periodontiti

    NuGrid stellar data set. 1. Stellar yields from H to Bi for stars with metallicities Z=0.02 and Z=0.01

    Get PDF
    We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z = 0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the ¹³C pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced

    Measurement of 73 Ge(n,γ) cross sections and implications for stellar nucleosynthesis

    Get PDF
    © 2019 The Author(s). Published by Elsevier B.V.73 Ge(n,γ) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT=30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of 73 Ge produced in stars, which would explain the low isotopic abundance of 73 Ge in the solar system.Peer reviewe

    Filling an Emulsion Drop with Motile Bacteria

    Get PDF
    We have measured the spatial distribution of motile Escherichia coli inside spherical water droplets emulsified in oil. At low cell concentrations, the cell density peaks at the water-oil interface; at increasing concentration, the bulk of each droplet fills up uniformly while the surface peak remains. Simulations and theory show that the bulk density results from a `traffic' of cells leaving the surface layer, increasingly due to cell-cell scattering as the surface coverage rises above 10%\sim 10\%. Our findings show similarities with the physics of a rarefied gas in a spherical cavity with attractive walls.Comment: 5 pages, 4 figures, Supporting Information (5 pages, 5 figures

    Measurement of the Ge 70 (n,γ) cross section up to 300 keV at the CERN n-TOF facility

    Get PDF
    ©2019 American Physical Society.Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on Ge70, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n-TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT=5 keV to kT=100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while they are systematically smaller for neutron energies above 150 keV. We have calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60-80.Peer reviewedFinal Published versio

    Pechiche (Vitex cymosa Berteo ex Speng), a nontraditional fruit from Ecuador, is a dietary source of phenolic acids and nutrient minerals, in addition to efficiently counteracting the oxidative-induced damage in human dermal fibroblasts

    Get PDF
    Pechiche fruits (Vitex cymosa Berteo ex Speng) from Ecuador were studied to determine their phenolic acid profile, nutrient minerals and capacity to protect primary human dermal fibroblasts (HDFa) against oxidative-induced damage. Up to five phenolic acids were identified, with homovanillic acid as the main one. Vitamin C, β-carotene and lutein were also determined. Phosphorus and potassium were the main macrominerals, while iron was the principal micromineral. HDFa were preincubated with a crude pechiche extract (PCext) and then subjected to oxidative stress. The activity of five antioxidant enzymes, intracellular reactive oxygen species (ROS) and ATP levels and lipid peroxidation and protein oxidation were used as markers of oxidative damage. Preincubation with PCext for 24 h allowed for the significant reduction of intracellular ROS levels, improved the intracellular ATP levels and protected lipids and proteins against oxidative damage (p < 0.05). Additionally, preincubation with PCext was also able to significantly (p < 0.05) improve the activity of the antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and glutathione transferase, compared to the stressed group without pretreatment. The results obtained in this study suggest the potential of pechiche as a source of bioactive compounds, as well as its beneficial effect against oxidative stress.MINECO | Ref. AGL2015-64522-C2Interreg España-Portugal | Ref. 0377_IBERPHENOL_6_
    corecore