56 research outputs found

    Structure of the Yersinia pestis tip protein LcrV refined to 1.65 A resolution

    Get PDF
    This is the publisher's version, also available electronically from http://scripts.iucr.org/cgi-bin/paper?S1744309113008579.The human pathogen Yersinia pestis requires the assembly of the type III secretion system (T3SS) for virulence. The structural component of the T3SS contains an external needle and a tip complex, which is formed by LcrV in Y. pestis. The structure of an LcrV triple mutant (K40A/D41A/K42A) in a C273S background has previously been reported to 2.2 Å resolution. Here, the crystal structure of LcrV without the triple mutation in a C273S background is reported at a higher resolution of 1.65 Å. Overall the two structures are similar, but there are also notable differences, particularly near the site of the triple mutation. The refined structure revealed a slight shift in the backbone positions of residues Gly28-Asn43 and displayed electron density in the loop region consisting of residues Ile46-Val63, which was disordered in the original structure. In addition, the helical turn region spanning residues Tyr77-Gln95 adopts a different orientation

    Structure of the Diphtheria Toxin at Acidic pH: Implications for the Conformational Switching of the Translocation Domain

    Get PDF
    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Diphtheria toxin, an exotoxin secreted by Corynebacterium that causes disease in humans by inhibiting protein synthesis, enters the cell via receptor-mediated endocytosis. The subsequent endosomal acidification triggers a series of conformational changes, resulting in the refolding and membrane insertion of the translocation (T-)domain and ultimately leading to the translocation of the catalytic domain into the cytoplasm. Here, we use X-ray crystallography along with circular dichroism and fluorescence spectroscopy to gain insight into the mechanism of the early stages of pH-dependent conformational transition. For the first time, we present the high-resolution structure of the diphtheria toxin at a mildly acidic pH (5–6) and compare it to the structure at neutral pH (7). We demonstrate that neither catalytic nor receptor-binding domains change their structure upon this acidification, while the T-domain undergoes a conformational change that results in the unfolding of the TH2–3 helices. Surprisingly, the TH1 helix maintains its conformation in the crystal of the full-length toxin even at pH 5. This contrasts with the evidence from the new and previously published data, obtained by spectroscopic measurements and molecular dynamics computer simulations, which indicate the refolding of TH1 upon the acidification of the isolated T-domain. The overall results imply that the membrane interactions of the T-domain are critical in ensuring the proper conformational changes required for the preparation of the diphtheria toxin for the cellular entry.National Institute of General Medical Sciences (P30 GM110761)Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH1135

    Mutations at the flavin binding site of ETF:QO yield a MADD-like severe phenotype in Drosophila

    Get PDF
    Following a screening on EMS-induced Drosophila mutants defective for formation and morphogenesis of epithelial cells, we have identified three lethal mutants defective for the production of embryonic cuticle. The mutants are allelic to the CG12140 gene, the fly homologue of electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). In humans, inherited defects in this inner membrane protein account for multiple acyl-CoA dehydrogenase deficiency (MADD), a metabolic disease of beta-oxidation, with a broad range of clinical phenotypes, varying from embryonic lethal to mild forms. The three mutant alleles carried distinct missense mutations in ETF:QO (G65E, A68V and S104F) and maternal mutant embryos for ETF:QO showed lethal morphogenetic defects and a significant induction of apoptosis following germ-band elongation. This phenotype is accompanied by an embryonic accumulation of short- and medium-chain acylcarnitines (C4. C8 and 02) as well as long-chain acylcarnitines (C14 and C16:1), whose elevation is also found in severe MADD forms in humans under intense metabolic decompensation. In agreement the ETF:QO activity in the mutant embryos is markedly decreased in relation to wild type activity. Amino acid sequence analysis and structural mapping into a molecular model of ETF:QO show that all mutations map at FAD interacting residues, two of which at the nucleotide-binding Rossmann fold. This structural domain is composed by a beta-strand connected by a short loop to an alpha-helix, and its perturbation results in impaired cofactor association via structural destabilisation and consequently enzymatic inactivation. This work thus pinpoints the molecular origins of a severe MADD-like phenotype in the fruit fly and establishes the proof of concept concerning the suitability of this organism as,a potential model organism for MADD. (C) 2012 Elsevier B.V. All rights reserved.Fundacao para a Ciencia e Tecnologia (FCT/MCTES, Portugal) [PTDC/SAU-GMG/70033/2006, PTDC/QUI-BIQ/113027/2009, PTDC/BIA-BCM/111822/2009, PTDC/SAU-BID/111796/2009, SFRH/BPD/41609/2007, SFRH/BPD/74475/2010, SFRH/BPD/34763/2007]; CLIMB UK; [PEst-OE/EQB/LA0004/2011]info:eu-repo/semantics/publishedVersio

    An African-Specific Variant of TP53 Reveals PADI4 as a Regulator of p53-Mediated Tumor Suppression

    Get PDF
    TP53 is the most frequently mutated gene in cancer, yet key target genes for p53-mediated tumor suppression remain unidentified. Here, we characterize a rare, African-specific germline variant of TP53 in the DNA-binding domain Tyr107His (Y107H). Nuclear magnetic resonance and crystal structures reveal that Y107H is structurally similar to wild-type p53. Consistent with this, we find that Y107H can suppress tumor colony formation and is impaired for the transactivation of only a small subset of p53 target genes; this includes the epigenetic modifier PADI4, which deiminates arginine to the nonnatural amino acid citrulline. Surprisingly, we show that Y107H mice develop spontaneous cancers and metastases and that Y107H shows impaired tumor suppression in two other models. We show that PADI4 is itself tumor suppressive and that it requires an intact immune system for tumor suppression. We identify a p53–PADI4 gene signature that is predictive of survival and the efficacy of immune-checkpoint inhibitors. Significance: We analyze the African-centric Y107H hypomorphic variant and show that it confers increased cancer risk; we use Y107H in order to identify PADI4 as a key tumor-suppressive p53 target gene that contributes to an immune modulation signature and that is predictive of cancer survival and the success of immunotherapy

    Surface softening in metal-ceramic sliding contacts: An experimental and numerical investigation

    Get PDF
    This study investigates the tribolayer properties at the interface of ceramic/metal (i.e., WC/W) sliding contacts using various experimental approaches and classical atomistic simulations. Experimentally, nanoindentation and micropillar compression tests, as well as adhesion mapping by means of atomic force microscopy, are used to evaluate the strength of tungsten?carbon tribolayers. To capture the influence of environmental conditions, a detailed chemical and structural analysis is performed on the worn surfaces by means of XPS mapping and depth profiling along with transmission electron microscopy of the debris particles. Experimentally, the results indicate a decrease in hardness and modulus of the worn surface compared to the unworn one. Atomistic simulations of nanoindentation on deformed and undeformed specimens are used to probe the strength of the WC tribolayer and despite the fact that the simulations do not include oxygen, the simulations correlate well with the experiments on deformed and undeformed surfaces, where the difference in behavior is attributed to the bonding and structural differences of amorphous and crystalline W-C. Adhesion mapping indicates a decrease in surface adhesion, which based on chemical analysis is attributed to surface passivation

    Navigating through the r packages for movement

    Get PDF
    The advent of miniaturized biologging devices has provided ecologists with unprecedented opportunities to record animal movement across scales, and led to the collection of ever-increasing quantities of tracking data. In parallel, sophisticated tools have been developed to process, visualize and analyse tracking data; however, many of these tools have proliferated in isolation, making it challenging for users to select the most appropriate method for the question in hand. Indeed, within the r software alone, we listed 58 packages created to deal with tracking data or 'tracking packages'. Here, we reviewed and described each tracking package based on a workflow centred around tracking data (i.e. spatio-temporal locations (x, y, t)), broken down into three stages: pre-processing, post-processing and analysis, the latter consisting of data visualization, track description, path reconstruction, behavioural pattern identification, space use characterization, trajectory simulation and others. Supporting documentation is key to render a package accessible for users. Based on a user survey, we reviewed the quality of packages' documentation and identified 11 packages with good or excellent documentation. Links between packages were assessed through a network graph analysis. Although a large group of packages showed some degree of connectivity (either depending on functions or suggesting the use of another tracking package), one third of the packages worked in isolation, reflecting a fragmentation in the r movement-ecology programming community. Finally, we provide recommendations for users when choosing packages, and for developers to maximize the usefulness of their contribution and strengthen the links within the programming community

    Bias correction and uncertainty characterization of Dead-Reckoned paths of marine mammals

    Get PDF
    Background: Biologgers incorporating triaxial magnetometers and accelerometers can record animal movements at infra-second frequencies. Such data allow the Dead-Reckoned (DR) path of an animal to be reconstructed at high resolution. However, poor measures of speed, undocumented movements caused by ocean currents, confounding between movement and gravitational acceleration and measurement error in the sensors, limits the accuracy and precision of DR paths. The conventional method for calculating DR paths attempts to reduce random errors and systematic biases using GPS observations without rigorous statistical justification or quantification of uncertainty in the derived swimming paths. Methods We developed a Bayesian Melding (BM) approach to characterize uncertainty and correct for bias of DR paths. Our method used a Brownian Bridge process to combine the fine-resolution (but seriously biased) DR path and the sparse (but precise and accurate) GPS measurements in a statistically rigorous way. We also exploited the properties of underlying processes and some approximations to the likelihood to dramatically reduce the computational burden of handling large, high-resolution data sets. We implemented this approach in an R package “BayesianAnimalTracker”, and applied it to bio-logging data obtained from northern fur seals (Callorhinus ursinus) foraging in the Bering Sea. We also tested the accuracy of our method using cross-validation analysis and compared it to the conventional bias correction of DR and linear interpolation between GPS observations (connecting two consecutive GPS observations by a straight line). Results Our BM approach yielded accurate, high-resolution estimated paths with uncertainty quantified as credible intervals. Cross-validation analysis demonstrated the greater prediction accuracy of the BM method to reconstruct movements versus the conventional and linear interpolation methods. Moreover, the credible intervals covered the true path points albeit with probabilities somewhat higher than 95 %. The GPS corrected high-resolution path also revealed that the total distance traveled by the northern fur seals we tracked was 40–50 % further than that calculated by linear interpolation of the GPS observations.Science, Faculty ofOceans and Fisheries, Institute for theStatistics, Department ofReviewedFacult
    corecore