CORE

structural communications

Acta Crystallographica Section F

Structural Biology
and Crystallization Communications

ISSN 1744-3091

Sukanya Chaudhury, ${ }^{\text {a }}$ Kevin P. Battaile, ${ }^{\text {b }}$ Scott Lovell, ${ }^{\text {c }}$ Gregory V. Plano ${ }^{\text {d }}$ and Roberto N. De Guzman ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA, ${ }^{\text {b }}$ IMCA-CAT, Hauptman-Woodward Medical Research Institute, 9700 South Cass Avenue, Argonne, IL 60439, USA, ${ }^{\text {' }}$ Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA, and d Department of Microbiology and Immunology, University of Miami, Miami, FL 33136, USA

Correspondence e-mail: rdguzman@ku.edu

Received 22 February 2013
Accepted 28 March 2013
PDB Reference: Yersinia pestis tip protein LcrV, 4jbu

[^0] All rights reserved

Structure of the Yersinia pestis tip protein LcrV refined to $1.65 \AA$ resolution

The human pathogen Yersinia pestis requires the assembly of the type III secretion system (T3SS) for virulence. The structural component of the T3SS contains an external needle and a tip complex, which is formed by LcrV in Y. pestis. The structure of an LcrV triple mutant (K40A/D41A/K42A) in a C273S background has previously been reported to $2.2 \AA$ resolution. Here, the crystal structure of LcrV without the triple mutation in a C273S background is reported at a higher resolution of $1.65 \AA$. Overall the two structures are similar, but there are also notable differences, particularly near the site of the triple mutation. The refined structure revealed a slight shift in the backbone positions of residues Gly28-Asn43 and displayed electron density in the loop region consisting of residues Ile46-Val63, which was disordered in the original structure. In addition, the helical turn region spanning residues Tyr77-Gln95 adopts a different orientation.

1. Introduction

The Gram-negative bacterium Yersinia pestis, which is the causative agent of bubonic plague, has caused pandemics that have resulted in large-scale social devastation. The type III secretion system (T3SS) plays a critical role in the pathogenicity of Y. pestis as well as that of other human pathogens such as Shigella flexneri, Salmonella typhimurium and Burkholderia pseudomallei (Cornelis, 2006). The T3SS is a complex nanomachine that is utilized by pathogenic bacteria to deliver bacterial effector proteins into the cytosol of targeted host cells (Cornelis, 2002, 2006). The structural component of the T3SS is a needle apparatus which is assembled from over a dozen different proteins and is composed of a basal-membrane-embedded structure, an external needle, a tip complex and a translocon. The external needle of the Y. pestis T3SS (also known as the Ysc-Yop system) is formed by polymerization of YscF and ends in a tip complex formed by multiple copies of LcrV which serves as a platform for the assembly of the translocon proteins YopB and YopD (Cornelis, 2002). Prior to assembly at the needle tip, LcrV is chaperoned by a smaller protein, LcrG (DeBord et al., 2001; Matson \& Nilles, 2001).
The $2.2 \AA$ resolution crystal structure of LcrV (residues Leu24Lys326) was reported in 2004 using a construct containing triple mutations (K40A/D41A/K42A) in a C273S background (Derewenda et al., 2004). Since then, crystal structures of other T3SS tip proteins such as the Shigella IpaD (Johnson et al., 2007), the Salmonella SipD (Chatterjee et al., 2011; Lunelli et al., 2011) and the Burkholderia BipD (Erskine et al., 2006; Johnson et al., 2007) tip proteins have been determined. The T3SS tip proteins share common structural motifs as well as variations among bacterial species. Here, the refined structure of LcrV is reported at $1.65 \AA$ resolution, which highlights structural similarities as well as differences that exist between two constructs of the same protein.

2. Methods

2.1. Protein expression and purification

The DNA region coding for Y. pestis LcrV residues Gly28-Asp322 with a C273S point mutation was subcloned as a fusion protein with a His $_{6}$-tagged streptococcal GB1 domain and a tobacco etch virus
(TEV) protease site. The subcloning introduced a three-residue (GHM) cloning artifact at the N -terminus of LcrV following cleavage of the fusion tag. The expression plasmid was transformed into Escherichia coli BL21(DE3) DNAY and a 10 ml overnight starter culture was used to inoculate a 11 LB culture. The cells were grown at 310 K to an OD_{600} of $0.6-0.8$ and were induced with $1 \mathrm{~m} M$ IPTG overnight at 288 K . The cells were harvested, resuspended in 30 ml binding buffer ($500 \mathrm{~m} M \mathrm{NaCl}, 20 \mathrm{~m} M$ Tris- $\mathrm{HCl}, 5 \mathrm{~m} M$ imidazole pH 8.0) and stored at 253 K . To purify LcrV, the frozen cells were warmed to 277 K , lysed by sonication and centrifuged to remove the cellular debris. The supernatant was loaded onto a 5 ml nickel-affinity column (Sigma) and washed with the binding buffer. The protein was eluted using $500 \mathrm{~m} M \mathrm{NaCl}, 20 \mathrm{~m} M$ Tris- $\mathrm{HCl}, 250 \mathrm{~m} M$ imidazole pH 8.0. Fractions containing LcrV were combined and dialyzed overnight against 11 TEV digestion buffer ($50 \mathrm{~m} M$ Tris, $0.5 \mathrm{~m} M$ EDTA, $1 \mathrm{~m} M$ DTT, $20 \mathrm{~m} M \mathrm{NaCl} \mathrm{pH} 8.0$) in the presence of $300 \mu \mathrm{l} 0.06 \mathrm{~m} M$ recombinant TEV protease (Geisbrecht et al., 2006). The mixture was passed over a nickel-affinity column to separate LcrV from the GB1 fusion partner and TEV protease. Fractions containing LcrV were pooled, dialyzed against $50 \mathrm{~m} M \mathrm{NaCl}, 20 \mathrm{~m} M$ Tris pH 8.0 and concentrated to $22 \mathrm{mg} \mathrm{ml}^{-1}(0.6 \mathrm{mM})$ using an Amicon Ultra 3 K concentrator (Millipore).

2.2. Crystallization and data collection

Crystallization screening was conducted at 293 K in Compact Clover (Emerald BioSystems) sitting-drop vapor-diffusion plates using $0.5 \mu \mathrm{l}$ protein solution and $0.5 \mu \mathrm{l}$ crystallization solution equilibrated against $75 \mu \mathrm{l}$ crystallization solution. Initial crystals, which formed plate clusters, were obtained in approximately 24 h from Index HT screen (Hampton Research) conditions D8 (25\% PEG $3350,100 \mathrm{~m} M$ HEPES pH 7.5) and D9 (25% PEG $3350,100 \mathrm{~m} M$ Tris pH 8.5). The crystallization conditions were refined using the pH Buffer Screen (Emerald BioSystems) and the prismatic crystals used for data collection were obtained using 25% PEG $3350,100 \mathrm{mM}$ Bicine pH 7.0 (Fig. 1). Single crystals were transferred to a fresh drop of a cryoprotectant solution consisting of 80% crystallization solution and 20% PEG 400 . X-ray diffraction data were obtained using a PILATUS 6 M pixel-array detector (Dectris) on beamline 17ID (IMCA-CAT) at the Advanced Photon Source.

Figure 1
Prismatic crystals of LcrV (Gly28-Asp322, C273S). Initial crystals were observed from Index HT screen conditions D8 and D9. Refined crystals were obtained using the pH Buffer Screen.

Table 1
Crystallographic data for LcrV (Gly28-Asp322, C273S) refined to $1.65 \AA$ resolution.

Values in parentheses are for the highest resolution shell.

Data collection	
Unit-cell parameters ($\mathrm{A},{ }^{\circ}$)	$\begin{aligned} & a=39.51, b=51.44, c=65.18, \\ & \quad \beta=92.00 \end{aligned}$
Space group	$P 2_{1}$
Resolution (Å)	51.44-1.65 (1.74-1.65)
Wavelength (A)	1.0000
Temperature (K)	100
Observed reflections	103407
Unique reflections	31392
Mean $I / \sigma(I)$	18.0 (2.2)
Completeness (\%)	99.3 (99.8)
Multiplicity	3.3 (3.3)
$R_{\text {merge }} \dagger$ (\%)	3.4 (50.5)
$R_{\text {meas }} \ddagger(\%)$	4.0 (60.3)
$R_{\text {p.i.m. }}$ § (\%)	2.2 (32.6)
Refinement	
Resolution (\AA)	34.33-1.65
Reflections (working/test)	29790/1582
R factor $/ R_{\text {free }} \boldsymbol{T}$ (\%)	17.7/22.0
No. of atoms	
Protein	2216
PEG 400	10
Water	149
Model quality	
R.m.s. deviations	
Bond lengths (\AA)	0.011
Bond angles (${ }^{\circ}$)	1.196
Average B factor (\AA^{2})	
All atoms	28.6
Protein	28.0
PEG 400	48.9
Water	35.4
Coordinate error based on maximum likelihood (\AA)	0.24
Ramachandran plot	
Most favored (\%)	98.9
Additionally allowed (\%)	1.1

$\dagger R_{\text {merge }}=\sum_{h k l} \sum_{i}\left|I_{i}(h k l)-\langle I(h k l)\rangle\right| / \sum_{h k l} \sum_{i} I_{i}(h k l)$, where $I_{i}(h k l)$ is the intensity measured for the i th reflection and $\langle I(h k l)\rangle$ is the average intensity of all reflections with indices $h k l . \quad \ddagger R_{\text {meas }}$ is the redundancy-independent (multiplicity-weighted) $R_{\text {merge }}$ (Evans, 2006). $\S R_{\text {p.i.m. }}$ is the precision-indicating (multiplicity-weighted) $R_{\text {merge }}$ (Diederichs \& Karplus, 1997; Weiss, 2001). $\quad\left|R=\sum_{h k l}\right|\left|F_{\text {obs }}\right|-\left|F_{\text {calc }}\right|\left|/ \sum_{h k l}\right| F_{\text {obs }} \mid$; $R_{\text {free }}$ is calculated in an identical manner using a randomly selected 5% of the reflections, which were not included in the refinement

2.3. Structure solution and refinement

The diffraction data were integrated and scaled using $X D S$ (Kabsch, 1988) and SCALA (Evans, 2006), respectively. The Laue class was checked with POINTLESS (Evans, 2006), which indicated that $2 / m$ was correct and that the likely space group was $P 2_{1}$. Structure solution was conducted with Phaser (McCoy et al., 2007) via the PHENIX (Adams et al., 2010) interface using a previously determined structure of LcrV (PDB entry 1r6f; Derewenda et al., 2004) as the search model. Searches were conducted in space groups $P 2$ and $P 2_{1}$, with the top solution being obtained in the latter. Following manual model building with Coot (Emsley \& Cowtan, 2004), the structure was improved by automated model building with ARP/ $w A R P$ (Langer et al., 2008). Structure refinement and additional model building were performed with PHENIX and Coot, respectively. Disordered side-chain residues were truncated at the point to which electron density could be observed. Structure validation was conducted with MolProbity (Chen et al., 2010). Crystallographic data are provided in Table 1.

3. Results and discussion

The final model contained residues Gly28-Leu319, a PEG 400 molecule and 149 water molecules (Fig. 2). Residues Lys261-Pro279
could not be fitted to the electron density owing to disorder. The overall structure of LcrV is similar to that reported previously (PDB entry 1r6f; Derewenda et al., 2004), with an r.m.s.d. between C ${ }^{\alpha}$ atoms (244 residues) of $1.62 \AA$ as determined using secondary-structure

Figure 2
Crystal structure of LcrV refined to $1.65 \AA$ resolution. LcrV can be divided into three domains: the N-terminal globular domain (pale pink), the central coiled-coil domain (green) and the less structured mixed α / β domain (light blue).

The differences in the N-terminal domain of the refined stucture of LcrV from that of PDB entry 1 r 6 f .
matching (Krissinel \& Henrick, 2004) in Coot (Emsley et al., 2010). Similar to 1 r 6 f (Derewenda et al., 2004), LcrV is mainly an α-helical protein, with 55% of the residues present in 12α-helices ($\alpha 1-\alpha 12$), 7% of the residues present in six β-strands and 32% of the residues present in random coils. The overall shape of the protein structure can be described as 'dumbbell-shaped' and is composed of a central coiled-coil region connecting two globular domains (Derewenda et al., 2004). The N-terminal globular domain (residues Gly25-Gly147) is formed by two antiparallel β-strands ($\beta 1$ and $\beta 2$) and six helices ($\alpha 1-\alpha 6$) and packs at one end of a long central coiled coil formed by helix $\alpha 7$ and helix $\alpha 12$. The central coiled coil connects to a second globular domain formed by a mixture of α-helices and β-strands. This mixed α / β domain is less structured compared with the N -terminal globular domain and contains four short helices ($\alpha 8-\alpha 11$) and four antiparallel β-strands $(\beta 3-\beta 6)$. The bulk of the α / β domain is unstructured and is composed of coils and turns connecting the short helices and the β-strands.

However, there are significant differences between 1r6f and the current structure. In the N-terminal domain, differences exist at residues Gly28-Asn43, Ile46-Val63 and Tyr77-Gln95 (Fig. 3). Residues Gly23-His27 could not be modeled in PDB entry 1r6f; however, in the current structure residues Gly28-Ser30 formed a random coil, with helix $\alpha 1$ starting at Val31 (helix $\alpha 1$ starts at Gly28 in 1r6f). The relative orientation of helix $\alpha 1$ is also slightly shifted compared with the equivalent helix in 1r6f. In 1r6f, residues Lys49-Val63 were not visible in the electron-density map owing to disorder (Derewenda et al., 2004), whereas in the current structure Ile46-Val63 form an ordered loop that packs at the C-terminal end of one of the helices (helix $\alpha 12$) of the central coiled coil. Additionally, the helical turn spanning residues Tyr77-Gln 95 adopts different orientations in the two structures and Tyr90, which was not visible in 1r6f, could be modeled in the current structure. In 1r6f the residues Asn260-Asp275 could not be modeled. Similarly, in our model the residues Lys261Pro279 could not be modeled owing to disorder.

As noted above, the 1 r6f structure was solved using the triple mutant K40A/D41A/K42A in a C273S background, whereas the LcrV structure reported here only has the background C273S mutation. The C273S point mutation facilitated protein purification and the triple mutation (K40A/D41A/K42A) at the terminal end of helix $\alpha 1$ facilitated crystallization (Derewenda et al., 2004). Most of the significant differences between the 1 r 6 f structure and the current structure are in the helix containing the triple mutation and in the region spanning Tyr77-Gln 95 . The differences in these regions of the two structures may be a consequence of crystal packing. It should be

Figure 4
Superposition of the refined structure of LcrV with that of PDB entry 1r6f. (a) A loop spanning Lys49-Arg62 from a symmetry-related molecule (gray) in the current structure would clash with the Tyr77-Gln95 region (blue) of PDB entry 1r6f. (b) Conformational changes in the Gly $25-$ Asn 43 region are shown by the curved arrow and those in the Tyr77-Gln95 region are indicated by straight arrows. (c) Hydrogen-bond crystal contacts (dashed lines) observed in the current structure. Symmetry-related molecules are colored gray. The Lys40-Lys42 region from 1r6f is indicated.

structural communications

Figure 5
The most prominent structural feature of the T3SS tip proteins is the central coiled coil (green), which is kinked in Y. pestis LcrV (a) but is straight in B. pseudomallei BipD (b), S. flexneri IpaD (c) and S. typhimurium SipD (d).
noted that the 'tightness' of the crystal packing, as gauged from the solvent content (39.1% for 1 r 6 f versus 37.0% for the current structure) and the Matthews coefficient ($2.02 \AA^{3} \mathrm{Da}^{-1}$ for 1 r 6 f versus $1.95 \AA^{3} \mathrm{Da}^{-1}$ for the current structure), is similar in the two structures. However, the Tyr77-Gln95 region appears to be precluded from adopting a conformation similar to that observed for 1r6f owing to a nearby loop from a symmetry-related molecule (Fig. 4a). Thus, Tyr77-Gln 95 , which is random coil in 1 r 6 f , is composed of a helix and a sheet ($\alpha 3$ and $\beta 2$) in the current structure. This in turn appears to result in movement of the N -terminus from Gly25 to Val31 to form the $\beta 1$ strand, which adopts an antiparallel orientation to $\beta 2$, and a slight shift in helix $\alpha 1$ relative to 1 r 6 f (Fig. $4 b$). It was noted that the site of the triple mutant in 1r6f forms a crystal contact with Lys176 (Derewenda et al., 2004), although it does not appear to form a direct hydrogen bond but is rather in proximity to the mutation sites. In the current structure, new hydrogen bonds between symmetry-related molecules are formed at the ends of helix $\alpha 1$, as shown in Fig. 4(c). The triple mutations in 1 r 6 f are located in the N -terminal domain of LcrV, which forms the base of the tip complex and is suggested to be involved in protein-protein interaction with the translocon (Broz et al., 2007). Thus, the refined crystal structure of LcrV reported here with native residues in the N -terminal domain will be useful in future structural studies of the LcrV-translocon interaction.

There is low sequence identity between LcrV and the tip proteins IpaD (Johnson et al., 2007), BipD (Erskine et al., 2006; Johnson et al., 2007) and SipD (Chatterjee et al., 2011; Lunelli et al., 2011). LcrV is more closely related to PcrV, the tip protein of Pseudomonas aeruginosa (Derewenda et al., 2004), for which a crystal structure is not available. Nevertheless, despite poor sequence similarity to IpaD, BipD and SipD, the LcrV central coiled coil (forming the handle of the dumbbell) is conserved and forms a common structural feature among T3SS tip proteins (Fig. 5; Erskine et al., 2006; Johnson et al., 2007; Lunelli et al., 2011; Chatterjee et al., 2011). The structural conservation of the central coiled coil among T3SS tip proteins suggests an important role in T3SS function. Others have hypothesized that the central coiled coil plays an important role in the
assembly of the T3SS tip complex (Deane et al., 2006; Blocker et al., 2008). Recently, it has been shown that the central coiled coil of SipD is the site of protein-protein interactions with the needle protein and is important in the assembly of the T3SS needle apparatus (Rathinavelan et al., 2011; Lunelli et al., 2011).

With respect to structural differences among T3SS tip proteins, the LcrV N -terminal globular domain is unique to LcrV and is absent in IpaD (Johnson et al., 2007), BipD (Erskine et al., 2006; Johnson et al., 2007) and SipD (Chatterjee et al., 2011; Lunelli et al., 2011) (Fig. 5). In IpaD, BipD and SipD the N-terminal region forms an α-helical hairpin that has been proposed to be a self-chaperone for these tip proteins (Johnson et al., 2007; Erskine et al., 2006; Blocker et al., 2008). However, in LcrV a small 95 -residue protein, LcrG , functions as a chaperone via the formation of a protein complex (Matson \& Nilles, 2001, 2002; Lawton et al., 2002; Blocker et al., 2008). Another difference between LcrV and the self-chaperoned tip proteins (IpaD, BipD and SipD) is that the C-terminal helix of the central coiled coil (helix $\alpha 12$) is bent and kinked, whereas in the other tip proteins the equivalent helix is straight (Fig. 5; Blocker et al., 2008). These structural differences suggest that the needle-tip assembly process may vary between T3SS family members.

We are grateful to Srirupa Chatterjee for helpful discussions. This research was supported by NIH grants AI074856 (RND), AI039575 (GP), 5P20RR017708-10 and 8P20GM103420-10 (University of Kansas Protein Structure Laboratory). Use of the IMCA-CAT beamline 17-ID at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with the Hauptman-Woodward Medical Research Institute. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract No. DE-AC02-06CH11357.

References

Adams, P. D. et al. (2010). Acta Cryst. D66, 213-221.

Blocker, A. J., Deane, J. E., Veenendaal, A. K., Roversi, P., Hodgkinson, J. L., Johnson, S. \& Lea, S. M. (2008). Proc. Natl Acad. Sci. USA, 105, 65076513.

Broz, P., Mueller, C. A., Müller, S. A., Philippsen, A., Sorg, I., Engel, A. \& Cornelis, G. R. (2007). Mol. Microbiol. 65, 1311-1320.
Chatterjee, S., Zhong, D., Nordhues, B. A., Battaile, K. P., Lovell, S. \& De Guzman, R. N. (2011). Protein Sci. 20, 75-86.
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. \& Richardson, D. C. (2010). Acta Cryst. D66, 12-21.
Cornelis, G. R. (2002). Nature Rev. Mol. Cell Biol. 3, 742-752.
Cornelis, G. R. (2006). Nature Rev. Microbiol. 4, 811-825.
Deane, J. E., Roversi, P., Cordes, F. S., Johnson, S., Kenjale, R., Daniell, S., Booy, F., Picking, W. D., Picking, W. L., Blocker, A. J. \& Lea, S. M. (2006). Proc. Natl Acad. Sci. USA, 103, 12529-12533.
DeBord, K. L., Lee, V. T. \& Schneewind, O. (2001). J. Bacteriol. 183, 45884598.

Derewenda, U., Mateja, A., Devedjiev, Y., Routzahn, K. M., Evdokimov, A. G., Derewenda, Z. S. \& Waugh, D. S. (2004). Structure, 12, 301-306.
Diederichs, K. \& Karplus, P. A. (1997). Nature Struct. Biol. 4, 269-275.
Emsley, P. \& Cowtan, K. (2004). Acta Cryst. D60, 2126-2132.
Emsley, P., Lohkamp, B., Scott, W. G. \& Cowtan, K. (2010). Acta Cryst. D66, 486-501.

Erskine, P. T., Knight, M. J., Ruaux, A., Mikolajek, H., Wong Fat Sang, N., Withers, J., Gill, R., Wood, S. P., Wood, M., Fox, G. C. \& Cooper, J. B. (2006). J. Mol. Biol. 363, 125-136.

Evans, P. (2006). Acta Cryst. D62, 72-82.
Geisbrecht, B. V., Bouyain, S. \& Pop, M. (2006). Protein Expr. Purif. 46, 23-32. Johnson, S., Roversi, P., Espina, M., Olive, A., Deane, J. E., Birket, S., Field, T., Picking, W. D., Blocker, A. J., Galyov, E. E., Picking, W. L. \& Lea, S. M. (2007). J. Biol. Chem. 282, 4035-4044.

Kabsch, W. (1988). J. Appl. Cryst. 21, 67-72.
Krissinel, E. \& Henrick, K. (2004). Acta Cryst. D60, 2256-2268.
Langer, G., Cohen, S. X., Lamzin, V. S. \& Perrakis, A. (2008). Nature Protoc. 3, 1171-1179.
Lawton, D. G., Longstaff, C., Wallace, B. A., Hill, J., Leary, S. E., Titball, R. W. \& Brown, K. A. (2002). J. Biol. Chem. 277, 38714-38722.
Lunelli, M., Hurwitz, R., Lambers, J. \& Kolbe, M. (2011). PLoS Pathog. 7, e1002163.
Matson, J. S. \& Nilles, M. L. (2001). J. Bacteriol. 183, 5082-5091.
Matson, J. S. \& Nilles, M. L. (2002). BMC Microbiol. 2, 16.
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. \& Read, R. J. (2007). J. Appl. Cryst. 40, 658-674.

Rathinavelan, T., Tang, C. \& De Guzman, R. N. (2011). J. Biol. Chem. 286, 4922-4930.
Weiss, M. S. (2001). J. Appl. Cryst. 34, 130-135.

[^0]: (C) 2013 International Union of Crystallography

