468 research outputs found

    The incidence of first stroke in pregnant and non-pregnant women of childbearing age: a population-based cohort study from England

    Get PDF
    Background: Pregnant women may have an increased risk of stroke compared to non-pregnant women of similar age, but the magnitude and the timing of such risk are unclear. We examined the risk of first stroke event in women of childbearing age and compared the risk during pregnancy and in the early postpartum period to background risk outside these periods. Methods and Results: We conducted an open cohort study of 2,046,048 women aged 15-49 years between 1st April 1997 and 31th March 2014 using linked primary (Clinical Practice Research Datalink) and secondary (Hospital Episode Statistics) care records in England. Risk of first stroke was assessed by calculating the incidence rate of stroke in antepartum, peripartum (2 days before until 1 day after delivery), early (first six weeks) and late (second six weeks) postpartum periods, compared with non-pregnant time using a Poisson regression model with adjustment for maternal age, socioeconomic group and calendar time. A total of 2,511 women had a first stroke. The incidence rate of stroke was 25.0 per 100,000 person-years (95% confidence interval 24.0-26.0) in non-pregnant time. The rate was lower antepartum (10.7/100,000 person-years, 7.6-15.1), but 9-fold higher peripartum (161.1/100,000 person-years, 80.6-322.1) and 3-fold higher early postpartum (47.1/100,000 person-years, 31.3-70.9). Rates of ischaemic and haemorrhagic stroke both increased peripartum and early postpartum. Conclusions: Although the absolute risk of first stroke is low in women of childbearing age, health care professionals should be aware of a considerable increase in relative risk during the peripartum and early postpartum periods

    The influence of nova nucleosynthesis on the chemical evolution of the Galaxy

    Get PDF
    We adopt up-to-date yields of 7Li, 13C, 15N from classical novae and use a well tested model for the chemical evolution of the Milky Way in order to predict the temporal evolution of these elemental species in the solar neighborhood. In spite of major uncertainties due to our lack of knowledge of metallicity effects on the final products of explosive nucleosynthesis in nova outbursts, we find a satisfactory agreement between theoretical predictions and observations for 7Li and 13C. On the contrary, 15N turns out to be overproduced by about an order of magnitude.Comment: 8 pages, latex, 3 figures. To appear in "The Chemical Evolution of the Milky Way: Stars versus Clusters", eds. F. Giovannelli and F. Matteucci (Kluwer: Dordrecht

    The origin of variability of the intermediate-mass black-hole ULX system HLX-1 in ESO 243-49

    Full text link
    The ultra-luminous intermediate-mass black-hole system HLX-1 in the ESO 243-49 galaxy exhibits variability with a possible recurrence time of a few hundred days. Finding the origin of this variability would constrain the still largely unknown properties of this extraordinary object. Since it exhibits an intensity-hardness behavior characteristic of black-hole X-ray transients, we have analyzed the variability of HLX-1 in the framework of the disk instability model that explains outbursts of such systems. We find that the long-term variability of HLX-1 is unlikely to be explained by a model in which outbursts are triggered by thermal-viscous instabilities in an accretion disc. Possible alternatives include the instability in a radiation-pressure dominated disk but we argue that a more likely explanation is a modulated mass-transfer due to tidal stripping of a star on an eccentric orbit around the intermediate-mass black hole. We consider an evolutionary scenario leading to the creation of such a system and estimate the probability of its observation. We conclude, using a simplified dynamical model of the post-collapse cluster, that no more than 1/100 to 1/10 of Mbh < 10^4 Msun IMBHs - formed by run-away stellar mergers in the dense collapsed cores of young clusters - could have a few times 1 Msun Main-Sequence star evolve to an AGB on an orbit eccentric enough for mass transfer at periapse, while avoiding collisional destruction or being scattered into the IMBH by 2-body encounters. The finite but low probability of this configuration is consistent with the uniqueness of HLX-1. We note, however, that the actual response of a standard accretion disk to bursts of mass transfer may be too slow to explain the observations unless the orbit is close to parabolic (and hence even rarer) and/or additional heating, presumably linked to the highly time-dependent gravitational potential, are invoked.Comment: 8 pages, 2 figures. Additional figure, extended discussion. To be published in ApJ, June 10, 2011, v734 -

    Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    Get PDF
    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP

    Nodule detection in digital chest radiography: part of image background acting as pure noise

    Get PDF
    There are several factors that influence the radiologist's ability to detect a specific structure/lesion in a radiograph. Three factors that are commonly known to be of major importance are the signal itself, the system noise and the projected anatomy. The aim of this study was to determine to what extent the image background acts as pure noise for the detection of subtle lung nodules in five different regions of the chest. A receiver operating characteristic (ROC) study with five observers was conducted on two different sets of images, clinical chest X-ray images and images with a similar power spectrum as the clinical images but with a random phase spectrum, resulting in an image background containing pure noise. Simulated designer nodules with a full-width-at-fifth-maximum of 10 mm but with varying contrasts were added to the images. As a measure of the part of the image background that acts as pure noise, the ratio between the contrast needed to obtain an area under the ROC curve of 0.80 in the clinical images to that in the random-phase images was used. The ratio ranged from 0.40 (in the lateral pulmonary regions) to 0.83 (in the hilar regions) indicating that there was a large difference between different regions regarding to what extent the image background acted as pure noise. and that in the hilar regions the image background almost completely acted as pure noise for the detection of 10 turn nodules

    A Search for Peculiar Objects with the NASA Orbital Debris Observatory 3-m Liquid Mirror Telescope

    Get PDF
    The NASA Orbital Debris Observatory (NODO) astronomical survey uses a transit 3-m liquid mirror telescope to observe a strip of sky in 20 narrow-band filters. In this article, we analyze a subset of data from the 1996 observing season. The catalog consists of 18,000 objects with 10<V<19 observed in 10 narrow-band filters ranging from 500 nm to 950 nm. We first demonstrate the reliability of the data by fitting the Bahcall-Soneira model of the Galaxy to the NODO magnitude counts and color counts at various galactic latitudes. We then perform a hierarchical clustering analysis on the sample to extract 206 objects, out of a total of 18,000, showing peculiar spectral energy distributions. It is a measure of the reliability of the instrument that we extract so few peculiar objects. Although the data and results, per se, may not seem otherwise particularly remarkable, this work constitutes a milestone in optical astronomy since this is the first article that demonstrates astromomical research with a radically new type of mirror.Comment: 24 pages, 15 figures, 3 tables, gzipped-Postscript Revised version 27/04, added references and changed conten

    Dark Matter Annihilation around Intermediate Mass Black Holes: an update

    Full text link
    The formation and evolution of Black Holes inevitably affects the distribution of dark and baryonic matter in the neighborhood of the Black Hole. These effects may be particularly relevant around Supermassive and Intermediate Mass Black Holes (IMBHs), the formation of which can lead to large Dark Matter overdensities, called {\em spikes} and {\em mini-spikes} respectively. Despite being larger and more dense, spikes evolve at the very centers of galactic halos, in regions where numerous dynamical effects tend to destroy them. Mini-spikes may be more likely to survive, and they have been proposed as worthwhile targets for indirect Dark Matter searches. We review here the formation scenarios and the prospects for detection of mini-spikes, and we present new estimates for the abundances of mini-spikes to illustrate the sensitivity of such predictions to cosmological parameters and uncertainties regarding the astrophysics of Black Hole formation at high redshift. We also connect the IMBHs scenario to the recent measurements of cosmic-ray electron and positron spectra by the PAMELA, ATIC, H.E.S.S., and Fermi collaborations.Comment: 12 pages, 7 figures. Invited contribution to NJP Focus Issue on "Dark Matter and Particle Physics
    corecore