1,268 research outputs found

    Functional image-based radiotherapy planning for non-small cell lung cancer: a simulation study

    Get PDF
    Background and purpose: To investigate the incorporation of data from single-photon emission computed tomography (SPECT) or hyperpolarized helium-3 magnetic resonance imaging (He-3-MRI) into intensity-modulated radiotherapy (IMRT) planning for non-small cell lung cancer (NSCLC). Material and methods: Seven scenarios were simulated that represent cases of NSCLC with significant functional lung defects. Two independent IMRT plans were produced for each scenario; one to minimise total lung volume receiving >= 20 Gy (V-20), and the other to minimise only the functional lung volume receiving >= 20 Gy (FV20). Dose-volume characteristics and a plan quality index related to planning target volume coverage by the 95% isodose (V-PTV95/FV20) were compared between anatomical and functional plans using the Wilcoxon signed ranks test. Results: Compared to anatomical IMRT plans, functional planning reduced FV20 (median 2.7%, range 0.6-3.5%, p = 0.02), and total lung V-20 (median 1.5%, 0.5-2.7%, p = 0.02), with a small reduction in mean functional lung dose (median 0.4 Gy, 0-0.7 Gy, p = 0.03). There were no significant differences in target volume coverage or organ-at-risk doses. Plan quality index was improved for functional plans (median increase 1.4, range 0-11.8, p = 0.02). Conclusions: Statistically significant reductions in FV20, V-20 and mean functional lung dose are possible when IMRT planning is supplemented by functional information derived from SPECT or He-3-MRI. (C) 2009 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 93 (2009) 32-3

    A Combining Forecasting Modeling and Its Application

    Get PDF
    Part 5: Modelling and SimulationInternational audienceThe supply chain coordination has abstracted more and more attention from industries and academics. This paper studies a Bayesian combination forecasting model to integrate multiple forecasting resources and coordinate forecasting process among partners in retail supply chain. The simulation results based on the retail sales data show the effectiveness of this Bayesian combination forecasting model to coordinate the collaborative forecasting process. This Bayesian combination forecasting model can improve demand forecasting accuracy of supply chain

    Supergravity Microstates for BPS Black Holes and Black Rings

    Full text link
    We demonstrate a solution generating technique, modulo some constraints, for a large class of smooth supergravity solutions with the same asymptotic charges as a five dimensional 3-charge BPS black hole or black ring, dual to a D1/D5/P system. These solutions are characterized by a harmonic function with both positive and negative poles, which induces a geometric transition whereby singular sources have disappeared and all of the net charge at infinity is sourced by fluxes through two-cycles joining the poles of the harmonic function.Comment: 25 pages, 1 figure. Fixed minor typos, references added, extra comment on gauge choic

    The frequency of inappropriate nonformulary medication alert overrides in the inpatient setting

    Get PDF
    Background Experts suggest that formulary alerts at the time of medication order entry are the most effective form of clinical decision support to automate formulary management. Objective Our objectives were to quantify the frequency of inappropriate nonformulary medication (NFM) alert overrides in the inpatient setting and provide insight on how the design of formulary alerts could be improved. Methods Alert overrides of the top 11 (n = 206) most-utilized and highest-costing NFMs, from January 1 to December 31, 2012, were randomly selected for appropriateness evaluation. Using an empirically developed appropriateness algorithm, appropriateness of NFM alert overrides was assessed by 2 pharmacists via chart review. Appropriateness agreement of overrides was assessed with a Cohen’s kappa. We also assessed which types of NFMs were most likely to be inappropriately overridden, the override reasons that were disproportionately provided in the inappropriate overrides, and the specific reasons the overrides were considered inappropriate. Results Approximately 17.2% (n = 35.4/206) of NFM alerts were inappropriately overridden. Non-oral NFM alerts were more likely to be inappropriately overridden compared to orals. Alerts overridden with “blank” reasons were more likely to be inappropriate. The failure to first try a formulary alternative was the most common reason for alerts being overridden inappropriately. Conclusion Approximately 1 in 5 NFM alert overrides are overridden inappropriately. Future research should evaluate the impact of mandating a valid override reason and adding a list of formulary alternatives to each NFM alert; we speculate these NFM alert features may decrease the frequency of inappropriate overrides

    Four lectures on secant varieties

    Full text link
    This paper is based on the first author's lectures at the 2012 University of Regina Workshop "Connections Between Algebra and Geometry". Its aim is to provide an introduction to the theory of higher secant varieties and their applications. Several references and solved exercises are also included.Comment: Lectures notes to appear in PROMS (Springer Proceedings in Mathematics & Statistics), Springer/Birkhause

    Competitor phenology as a social cue in breeding site selection

    Get PDF
    Predicting habitat quality is a major challenge for animals selecting a breeding patch, because it affects reproductive success. Breeding site selection may be based on previous experience, or on social information from the density and success of competitors with an earlier phenology. Variation in animal breeding phenology is often correlated with variation in habitat quality. Generally, animals breed earlier in high-quality habitats that allow them to reach a nutritional threshold required for breeding earlier or avoid nest predation. In addition, habitat quality may affect phenological overlap between species and thereby interspecific competition. Therefore, we hypothesized that competitor breeding phenology can be used as social cue by settling migrants to locate high-quality breeding sites. To test this hypothesis, we experimentally advanced and delayed hatching phenology of two resident tit species on the level of study plots and studied male and female settlement patterns of migratory pied flycatchers Ficedula hypoleuca. The manipulations were assigned at random in two consecutive years, and treatments were swapped between years in sites that were used in both years. In both years, males settled in equal numbers across treatments, but later arriving females avoided pairing with males in delayed phenology plots. Moreover, male pairing probability declined strongly with arrival date on the breeding grounds. Our results demonstrate that competitor phenology may be used to assess habitat quality by settling migrants, but we cannot pinpoint the exact mechanism (e.g. resource quality, predation pressure or competition) that has given rise to this pattern. In addition, we show that opposing selection pressures for arrival timing may give rise to different social information availabilities between sexes. We discuss our findings in the context of climate warming, social information use and the evolution of protandry in migratory animals

    An evidence-based socioecological framework to understand men’s use of anabolic androgenic steroids and inform interventions in this area

    Get PDF
    Research into men’s use of anabolic androgenic steroids (AAS) over the past three decades has identified many factors that contribute to decision making in this area. However there are limited theoretical frameworks to synthesize this research and guide practice, such as interventions to prevent use or reduce health risks. To address this gap a socioecological framework is presented based upon the international literature examining AAS use. Socioecological models recognize that individuals and behaviors exist within complex physical and social systems and are useful tools for guiding interventions to ensure consideration is given to multiple influential factors. This framework proposes that use of AAS is the result of the interaction of a range of factors at the individual, social network, institutional, community and societal levels that are likely to change over time and with experience. Viewed through this framework it becomes clear that AAS use can be a complex behavior with many influential environments and relationships impacting on a diverse population in different ways and at different times. The implications of findings for engaging with people who use AAS and delivering interventions are discussed, such as the identification of important transition times and influencing norms within social groups and communities

    Twistors and Black Holes

    Full text link
    Motivated by black hole physics in N=2, D=4 supergravity, we study the geometry of quaternionic-Kahler manifolds M obtained by the c-map construction from projective special Kahler manifolds M_s. Improving on earlier treatments, we compute the Kahler potentials on the twistor space Z and Swann space S in the complex coordinates adapted to the Heisenberg symmetries. The results bear a simple relation to the Hesse potential \Sigma of the special Kahler manifold M_s, and hence to the Bekenstein-Hawking entropy for BPS black holes. We explicitly construct the ``covariant c-map'' and the ``twistor map'', which relate real coordinates on M x CP^1 (resp. M x R^4/Z_2) to complex coordinates on Z (resp. S). As applications, we solve for the general BPS geodesic motion on M, and provide explicit integral formulae for the quaternionic Penrose transform relating elements of H^1(Z,O(-k)) to massless fields on M annihilated by first or second order differential operators. Finally, we compute the exact radial wave function (in the supergravity approximation) for BPS black holes with fixed electric and magnetic charges.Comment: 47 pages, v2: typos corrected, reference added, v3: minor change

    Discrete Nonholonomic Lagrangian Systems on Lie Groupoids

    Get PDF
    This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it is necessary to fix a vector subbundle of the Lie algebroid associated to the Lie groupoid. We also discuss the existence of nonholonomic evolution operators in terms of the discrete nonholonomic Legendre transformations and in terms of adequate decompositions of the prolongation of the Lie groupoid. The characterization of the reversibility of the evolution operator and the discrete nonholonomic momentum equation are also considered. Finally, we illustrate with several classical examples the wide range of application of the theory (the discrete nonholonomic constrained particle, the Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a rotating table and the two wheeled planar mobile robot).Comment: 45 page

    Phase separating binary fluids under oscillatory shear

    Full text link
    We apply lattice Boltzmann methods to study the segregation of binary fluid mixtures under oscillatory shear flow in two dimensions. The algorithm allows to simulate systems whose dynamics is described by the Navier-Stokes and the convection-diffusion equations. The interplay between several time scales produces a rich and complex phenomenology. We investigate the effects of different oscillation frequencies and viscosities on the morphology of the phase separating domains. We find that at high frequencies the evolution is almost isotropic with growth exponents 2/3 and 1/3 in the inertial (low viscosity) and diffusive (high viscosity) regimes, respectively. When the period of the applied shear flow becomes of the same order of the relaxation time TRT_R of the shear velocity profile, anisotropic effects are clearly observable. In correspondence with non-linear patterns for the velocity profiles, we find configurations where lamellar order close to the walls coexists with isotropic domains in the middle of the system. For particular values of frequency and viscosity it can also happen that the convective effects induced by the oscillations cause an interruption or a slowing of the segregation process, as found in some experiments. Finally, at very low frequencies, the morphology of domains is characterized by lamellar order everywhere in the system resembling what happens in the case with steady shear.Comment: 1 table and 12 figures in .gif forma
    • 

    corecore