211 research outputs found

    Modeling temporal networks using random itineraries

    Full text link
    We propose a procedure to generate dynamical networks with bursty, possibly repetitive and correlated temporal behaviors. Regarding any weighted directed graph as being composed of the accumulation of paths between its nodes, our construction uses random walks of variable length to produce time-extended structures with adjustable features. The procedure is first described in a general framework. It is then illustrated in a case study inspired by a transportation system for which the resulting synthetic network is shown to accurately mimic the empirical phenomenology

    Young stars in the time domain

    Get PDF
    Variability is a defining characteristic of young stellar systems, and optical variability has been heavily studied to select and characterize the photospheric properties of young stars. In recent years, multi-epoch observations sampling a wider range of wavelengths and time-scales have revealed a wealth of time-variable phenomena at work during the star formation process. This splinter session was convened to summarize recent progress in providing improved coverage and understanding of time-variable processes in young stars and circumstellar disks. We begin by summarizing results from several multi-epoch Spitzer campaigns, which have demonstrated that many young stellar objects evidence significant mid-IR variability. While some of these variations can be attributed to processes in the stellar photosphere, others appear to trace short time-scale changes in the circumstellar disk which can be successfully modeled with axisymmetric or non-axisymmetric structures. We also review recent studies probing variability at shorter wavelengths that provide evidence for high frequency pulsations associated with accretion outbursts, correlated optical/X-ray variability in Classical T Tauri stars, and magnetic reversals in young solar analogs

    Hash Functions for Episodic Recognition and Retrieval

    Get PDF
    Episodic memory systems for artificially intelligent agents must cope with an ever-growing episodic memory store. This paper presents an approach for minimizing the size of the store by using specialized hash functions to convert each memory into a relatively short binary code. A set of desiderata for such hash functions are presented including locale sensitivity and reversibility. The paper then introduces multiple approaches for such functions and compares their effectiveness

    A novel series of compositionally biased substitution matrices for comparing Plasmodium proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most common substitution matrices currently used (BLOSUM and PAM) are based on protein sequences with average amino acid distributions, thus they do not represent a fully accurate substitution model for proteins characterized by a biased amino acid composition. This problem has been addressed recently by adjusting existing matrices, however, to date, no empirical approach has been taken to build matrices which offer a substitution model for comparing proteins sharing an amino acid compositional bias. Here, we present a novel procedure to construct series of symmetrical substitution matrices to align proteins from similarly biased <it>Plasmodium </it>proteomes.</p> <p>Results</p> <p>We generated substitution matrices by selecting from the BLOCKS database those multiple alignments with a compositional bias similar to that of <it>P. falciparum </it>and <it>P. yoelii </it>proteins. A novel 'fuzzy' clustering method was adopted to group sequences within these alignments, showing that this method retains more complete information on the amino acid substitutions when compared to hierarchical clustering. We assessed the performance against the BLOSUM62 series and showed that the usage of our matrices results in an improvement in the performance of BLAST database searches, greatly reducing the number of false positive hits. We then demonstrated applications of the use of novel matrices to improve the annotation of homologs between the two <it>Plasmodium </it>species and to classify members of the <it>P. falciparum </it>RIFIN/STEVOR family.</p> <p>Conclusion</p> <p>We confirmed that in the case of compositionally biased proteins, standard BLOSUM matrices are not suited for optimal alignments, and specific substitution matrices are required. In addition, we showed that the usage of these matrices leads to a reduction of false positive hits, facilitating the automatic annotation process.</p

    Amphidinol 22, a New Cytotoxic and Antifungal Amphidinol from the Dinoflagellate Amphidinium carterae

    Get PDF
    The research leading to these results has received funding from Marie Skłodowska-Curie Innovative Training Networks PhD (Project Marpipe MSCA-ITN-ETN Proposal number: 721421) and European Union 7th Framework Program PHARMASEA (312184)Peer reviewedPublisher PD

    Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context

    Get PDF
    Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.

    A simplified mesoscale 3D model for characterizing fibrinolysis under flow conditions

    Get PDF
    One of the routine clinical treatments to eliminate ischemic stroke thrombi is injecting a biochemical product into the patient’s bloodstream, which breaks down the thrombi’s fibrin fibers: intravenous or intravascular thrombolysis. However, this procedure is not without risk for the patient; the worst circumstances can cause a brain hemorrhage or embolism that can be fatal. Improvement in patient management drastically reduced these risks, and patients who benefited from thrombolysis soon after the onset of the stroke have a significantly better 3-month prognosis, but treatment success is highly variable. The causes of this variability remain unclear, and it is likely that some fundamental aspects still require thorough investigations. For that reason, we conducted in vitro flow-driven fibrinolysis experiments to study pure fibrin thrombi breakdown in controlled conditions and observed that the lysis front evolved non-linearly in time. To understand these results, we developed an analytical 1D lysis model in which the thrombus is considered a porous medium. The lytic cascade is reduced to a second-order reaction involving fibrin and a surrogate pro-fibrinolytic agent. The model was able to reproduce the observed lysis evolution under the assumptions of constant fluid velocity and lysis occurring only at the front. For adding complexity, such as clot heterogeneity or complex flow conditions, we propose a 3-dimensional mesoscopic numerical model of blood flow and fibrinolysis, which validates the analytical model’s results. Such a numerical model could help us better understand the spatial evolution of the thrombi breakdown, extract the most relevant physiological parameters to lysis efficiency, and possibly explain the failure of the clinical treatment. These findings suggest that even though real-world fibrinolysis is a complex biological process, a simplified model can recover the main features of lysis evolution.</p
    corecore