86 research outputs found

    Grand Rounds: An Outbreak of Toxic Hepatitis among Industrial Waste Disposal Workers

    Get PDF
    CONTEXT: Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. CASE PRESENTATION: Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine, dimethylformamide, dimethylacetamide, and methylenedianiline. The workers had been working in the high-vapor-generating area of the plant, and the findings of pathologic examination showed typical features of acute toxic hepatitis. DISCUSSION: Infectious hepatitis and drug-induced hepatitis were excluded by laboratory findings, as well as the clinical course of hepatitis. All cases of toxic hepatitis in this plant developed after the change of the disposal process to thermochemical reaction–type treatment using unslaked lime reacted with industrial wastes. During this chemical reaction, vapor containing several toxic materials was generated. Although we could not confirm the definitive causative chemical, we suspect that these cases of hepatitis were caused by one of the hepatotoxic agents or by a synergistic interaction among several of them. RELEVANCE TO CLINICAL OR PROFESSIONAL PRACTICE: In the industrial waste treatment process, the danger of developing toxic hepatitis should be kept in mind, because any subtle change of the treatment process can generate various toxic materials and threaten the workers’ health. A mixture of hepatotoxic chemicals can induce clinical manifestations that are quite different from those predicted by the toxic property of a single agent

    A systematic variation of the stellar initial mass function in early-type galaxies

    Get PDF
    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars. It depends on the stellar initial mass function (IMF) describing the distribution of stellar masses when the population formed. Consequently knowledge of the IMF is critical to virtually every aspect of galaxy evolution. More than half a century after the first IMF determination, no consensus has emerged on whether it is universal in different galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot be both universal, but they could not break the degeneracy between the two effects. Only recently indications were found that massive elliptical galaxies may not have the same IMF as our Milky Way. Here we report unambiguous evidence for a strong systematic variation of the IMF in early-type galaxies as a function of their stellar mass-to-light ratio, producing differences up to a factor of three in mass. This was inferred from detailed dynamical models of the two-dimensional stellar kinematics for the large Atlas3D representative sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass. Our finding indicates that the IMF depends intimately on a galaxy's formation history.Comment: 4 pages, 2 figures, LaTeX. Accepted for publication as a Nature Letter. More information about our Atlas3D project is available at http://purl.org/atlas3

    Scoring Protein Relationships in Functional Interaction Networks Predicted from Sequence Data

    Get PDF
    The abundance of diverse biological data from various sources constitutes a rich source of knowledge, which has the power to advance our understanding of organisms. This requires computational methods in order to integrate and exploit these data effectively and elucidate local and genome wide functional connections between protein pairs, thus enabling functional inferences for uncharacterized proteins. These biological data are primarily in the form of sequences, which determine functions, although functional properties of a protein can often be predicted from just the domains it contains. Thus, protein sequences and domains can be used to predict protein pair-wise functional relationships, and thus contribute to the function prediction process of uncharacterized proteins in order to ensure that knowledge is gained from sequencing efforts. In this work, we introduce information-theoretic based approaches to score protein-protein functional interaction pairs predicted from protein sequence similarity and conserved protein signature matches. The proposed schemes are effective for data-driven scoring of connections between protein pairs. We applied these schemes to the Mycobacterium tuberculosis proteome to produce a homology-based functional network of the organism with a high confidence and coverage. We use the network for predicting functions of uncharacterised proteins

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Adaptive robot training for the treatment of incoordination in Multiple Sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebellar symptoms are extremely disabling and are common in Multiple Sclerosis (MS) subjects. In this feasibility study, we developed and tested a robot therapy protocol, aimed at the rehabilitation of incoordination in MS subjects.</p> <p>Methods</p> <p>Eight subjects with clinically defined MS performed planar reaching movements while grasping the handle of a robotic manipulandum, which generated forces that either reduced (error-reducing, ER) or enhanced (error-enhancing, EE) the curvature of their movements, assessed at the beginning of each session. The protocol was designed to adapt to the individual subjects' impairments, as well as to improvements between sessions (if any). Each subject went through a total of eight training sessions. To compare the effect of the two variants of the training protocol (ER and EE), we used a cross-over design consisting of two blocks of sessions (four ER and four EE; 2 sessions/week), separated by a 2-weeks rest period. The order of application of ER and EE exercises was randomized across subjects. The primary outcome measure was the modification of the Nine Hole Peg Test (NHPT) score. Other clinical scales and movement kinematics were taken as secondary outcomes.</p> <p>Results</p> <p>Most subjects revealed a preserved ability to adapt to the robot-generated forces. No significant differences were observed in EE and ER training. However over sessions, subjects exhibited an average 24% decrease in their NHPT score. The other clinical scales showed small improvements for at least some of the subjects. After training, movements became smoother, and their curvature decreased significantly over sessions.</p> <p>Conclusions</p> <p>The results point to an improved coordination over sessions and suggest a potential benefit of a short-term, customized, and adaptive robot therapy for MS subjects.</p

    Behavioural Significance of Cerebellar Modules

    Get PDF
    A key organisational feature of the cerebellum is its division into a series of cerebellar modules. Each module is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. While much is known about the neuronal wiring of individual cerebellar modules, their behavioural significance remains poorly understood. Here, we briefly review some recent data on the functional role of three different cerebellar modules: the vermal A module, the paravermal C2 module and the lateral D2 module. The available evidence suggests that these modules have some differences in function: the A module is concerned with balance and the postural base for voluntary movements, the C2 module is concerned more with limb control and the D2 module is involved in predicting target motion in visually guided movements. However, these are not likely to be the only functions of these modules and the A and C2 modules are also both concerned with eye and head movements, suggesting that individual cerebellar modules do not necessarily have distinct functions in motor control

    Globular cluster systems and galaxy formation

    Full text link
    Globular clusters are compact, gravitationally bound systems of up to a million stars. The GCs in the Milky Way contain some of the oldest stars known, and provide important clues to the early formation and continuing evolution of our Galaxy. More generally, GCs are associated with galaxies of all types and masses, from low-mass dwarf galaxies to the most massive early-type galaxies which lie in the centres of massive galaxy clusters. GC systems show several properties which connect tightly with properties of their host galaxies. For example, the total mass of GCs in a system scales linearly with the dark matter halo mass of its host galaxy. Numerical simulations are at the point of being able to resolve globular cluster formation within a cosmological framework. Therefore, GCs link a range of scales, from the physics of star formation in turbulent gas clouds, to the large-scale properties of galaxies and their dark matter. In this Chapter we review some of the basic observational approaches for GC systems, some of their key observational properties, and describe how GCs provide important clues to the formation of their parent galaxies.Comment: 32 pages, 6 figures. Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    Gaia Early Data Release 3: Summary of the contents and survey properties

    Get PDF
    ABSTRACT: Context. We present the early installment of the third Gaia data release, Gaia EDR3, consisting of astrometry and photometry for 1.8 billion sources brighter than magnitude 21, complemented with the list of radial velocities from Gaia DR2. Aims. A summary of the contents of Gaia EDR3 is presented, accompanied by a discussion on the differences with respect to Gaia DR2 and an overview of the main limitations which are present in the survey. Recommendations are made on the responsible use of Gaia EDR3 results. Methods. The raw data collected with the Gaia instruments during the first 34 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium and turned into this early third data release, which represents a major advance with respect to Gaia DR2 in terms of astrometric and photometric precision, accuracy, and homogeneity. Results. Gaia EDR3 contains celestial positions and the apparent brightness in G for approximately 1.8 billion sources. For 1.5 billion of those sources, parallaxes, proper motions, and the (GBP ? GRP) colour are also available. The passbands for G, GBP, and GRP are provided as part of the release. For ease of use, the 7 million radial velocities from Gaia DR2 are included in this release, after the removal of a small number of spurious values. New radial velocities will appear as part of Gaia DR3. Finally, Gaia EDR3 represents an updated materialisation of the celestial reference frame (CRF) in the optical, the Gaia-CRF3, which is based solely on extragalactic sources. The creation of the source list for Gaia EDR3 includes enhancements that make it more robust with respect to high proper motion stars, and the disturbing effects of spurious and partially resolved sources. The source list is largely the same as that for Gaia DR2, but it does feature new sources and there are some notable changes. The source list will not change for Gaia DR3. Conclusions. Gaia EDR3 represents a significant advance over Gaia DR2, with parallax precisions increased by 30 per cent, proper motion precisions increased by a factor of 2, and the systematic errors in the astrometry suppressed by 30-40% for the parallaxes and by a factor ~2.5 for the proper motions. The photometry also features increased precision, but above all much better homogeneity across colour, magnitude, and celestial position. A single passband for G, GBP, and GRP is valid over the entire magnitude and colour range, with no systematics above the 1% levelThe Gaia mission and data processing have financially been supported by ; the Spanish Ministry of Economy (MINECO/FEDER, UE) through grants ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, RTI2018-095076-B-C21, RTI2018-095076-B-C22, BES-2016-078499, and BES-2017-083126 and the Juan de la Cierva formación 2015 grant FJCI-2015-2671, the Spanish Ministry of Education, Culture, and Sports through grant FPU16/03827, the Spanish Ministry of Science and Innovation (MICINN) through grant AYA2017-89841P for project “Estudio de las propiedades de los fósiles estelares en el entorno del Grupo Local” and through grant TIN2015-65316-P for project “Computación de Altas Prestaciones VII
    corecore