109 research outputs found

    An Assessment of the Efficiency of Dust Regional Modelling to Predict Saharan Dust Transport Episodes

    Get PDF
    Aerosol levels at Mediterranean Basin are significantly affected by desert dust that is eroded in North Africa and is transported northwards. This study aims to assess the performance of the Dust REgional Atmospheric Model (BSC-DREAM8b) in the prediction of dust outbreaks near the surface in Eastern Mediterranean. For this purpose, model PM10 predictions covering a 7-year period and PM10 observations at five surface monitoring sites in Greece are used. A quantitative criterion is set to select the significant dust outbreaks defined as those when the predicted PM10 surface concentration exceeds 12 Όg/m3. The analysis reveals that significant dust transport is usually observed for 1–3 consecutive days. Dust outbreak seasons are spring and summer, while some events are also forecasted in autumn. The seasonal variability of dust transport events is different at Finokalia, where the majority of events are observed in spring and winter. Dust contributes by 19–25% to the near surface observed PM10 levels, which can be increased to more than 50 Όg/m3 during dust outbreaks, inducing violations of the air quality standards. Dust regional modeling can be regarded as a useful tool for air quality managers when assessing compliance with air quality limit values

    Space VLBI at Low Frequencies

    Full text link
    At sufficiently low frequencies, no ground-based radio array will be able to produce high resolution images while looking through the ionosphere. A space-based array will be needed to explore the objects and processes which dominate the sky at the lowest radio frequencies. An imaging radio interferometer based on a large number of small, inexpensive satellites would be able to track solar radio bursts associated with coronal mass ejections out to the distance of Earth, determine the frequency and duration of early epochs of nonthermal activity in galaxies, and provide unique information about the interstellar medium. This would be a "space-space" VLBI mission, as only baselines between satellites would be used. Angular resolution would be limited only by interstellar and interplanetary scattering.Comment: To appear in "Astrophysical Phenomena Revealed by Space VLBI", ed. H. Hirabayashi, P. Edwards, and D. Murphy (ISAS, Japan

    Radio source calibration for the VSA and other CMB instruments at around 30 GHz

    Get PDF
    Accurate calibration of data is essential for the current generation of CMB experiments. Using data from the Very Small Array (VSA), we describe procedures which will lead to an accuracy of 1 percent or better for experiments such as the VSA and CBI. Particular attention is paid to the stability of the receiver systems, the quality of the site and frequent observations of reference sources. At 30 GHz the careful correction for atmospheric emission and absorption is shown to be essential for achieving 1 percent precision. The sources for which a 1 percent relative flux density calibration was achieved included Cas A, Cyg A, Tau A and NGC7027 and the planets Venus, Jupiter and Saturn. A flux density, or brightness temperature in the case of the planets, was derived at 33 GHz relative to Jupiter which was adopted as the fundamental calibrator. A spectral index at ~30 GHz is given for each. Cas A,Tau A, NGC7027 and Venus were examined for variability. Cas A was found to be decreasing at 0.394±0.0190.394 \pm 0.019 percent per year over the period March 2001 to August 2004. In the same period Tau A was decreasing at 0.22±0.070.22\pm 0.07 percent per year. A survey of the published data showed that the planetary nebula NGC7027 decreased at 0.16±0.040.16\pm 0.04 percent per year over the period 1967 to 2003. Venus showed an insignificant (1.5±1.31.5 \pm 1.3 percent) variation with Venusian illumination. The integrated polarization of Tau A at 33 GHz was found to be 7.8±0.67.8\pm 0.6 percent at pa =148∘±3∘ = 148^\circ \pm 3^\circ.}Comment: 13 pages, 15 figures, submitted to MNRA

    an inclusive view of saharan dust advections to italy and the central mediterranean

    Get PDF
    Abstract We address observations of physical and chemical properties of Saharan dust advections (SDA) as observed in the Central Mediterranean basin, within the framework of the LIFE+10, DIAPASON project ( www.diapason-life.eu ). DIAPASON aimed at the definition of best practices and tools to detect and evaluate the contribution of Saharan dust to ground particulate matter (PM) loads. Polarization-sensitive, automated lidar-ceilometers (PLC) are one of the tools prototyped and used in the Rome area to reach this goal. The results presented in this study focus on: 1) the effectiveness of various observational tools at detecting and characterizing atmospheric dust plumes, and 2) processes and properties of Saharan dust advections reaching the central Mediterranean region. In this respect, the combination of numerical model forecasts and time-resolved (at least hourly) PLC or chemical observations was found to constitute an efficient way to predict and confirm the presence of Saharan dust. In the period 2011–2014, Saharan dust advections were observed to reach over Rome on about 32% of the days. In some 70% of these days the dust reached the ground in dry conditions, while 30% of advection days involved wet deposition. Dry (wet) deposition was found to maximize (minimize) in summer. The northern Sahara between Algeria and Tunisia (Grand Erg Oriental), was confirmed as the most frequent region of origin of the dust mobilized towards central Italy. Secondary source regions include northern Morocco and Libya. On a statistical basis, Saharan advections to Rome were preceded by increasing atmospheric pressure and stability. These conditions were found to favor the accumulation of aerosols related to local emission sources before the SDA reached the ground. Meteorology (precipitation and turbulence in primis) resulted to be an important modulator of PM concentrations during SDAs. Magnitude and timing of these factors should be well considered to correctly evaluate the dust share in PM loads or the related health effects. Saharan advections observed during DIAPASON affected particle concentrations down to diameters of about 0.6–1â€ŻÎŒm, with number concentrations peaking at the 2.5â€ŻÎŒm diameter range. These advections were associated with a significant increase in Si-rich particles containing a non-negligible fraction of water. Rainfall was observed to preferentially remove dust particles larger than 2â€ŻÎŒm, causing a significant depletion in the Ca-rich fraction with respect to the Si-rich one. The increase in PLC depolarization ratios above 5%, as well as the hourly PIXE records of the Si/Ca ratio increasing above 1 were found to represent good markers for the actual presence of Saharan dust particulate matter, when Saharan advection conditions are occurring

    Phase-space formulation of quantum mechanics and quantum state reconstruction for physical systems with Lie-group symmetries

    Get PDF
    We present a detailed discussion of a general theory of phase-space distributions, introduced recently by the authors [J. Phys. A {\bf 31}, L9 (1998)]. This theory provides a unified phase-space formulation of quantum mechanics for physical systems possessing Lie-group symmetries. The concept of generalized coherent states and the method of harmonic analysis are used to construct explicitly a family of phase-space functions which are postulated to satisfy the Stratonovich-Weyl correspondence with a generalized traciality condition. The symbol calculus for the phase-space functions is given by means of the generalized twisted product. The phase-space formalism is used to study the problem of the reconstruction of quantum states. In particular, we consider the reconstruction method based on measurements of displaced projectors, which comprises a number of recently proposed quantum-optical schemes and is also related to the standard methods of signal processing. A general group-theoretic description of this method is developed using the technique of harmonic expansions on the phase space.Comment: REVTeX, 18 pages, no figure

    A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals

    Get PDF
    Systematic measurements of dust concentration profiles at a continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research Infra-Structure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable data set and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAM-ABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1-6 km range, where most dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of -40 to -20 mu g m(-3) at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies

    Monocyte Gene Expression Signature of Patients with Early Onset Coronary Artery Disease

    Get PDF
    The burden of cardiovascular disease (CVD) cannot be fully addressed by therapy targeting known pathophysiological pathways. Even with stringent control of all risk factors CVD events are only diminished by half. A number of additional pathways probably play a role in the development of CVD and might serve as novel therapeutic targets. Genome wide expression studies represent a powerful tool to identify such novel pathways. We compared the expression profiles in monocytes from twenty two young male patients with premature familial CAD with those from controls matched for age, sex and smoking status, without a family history of CVD. Since all patients were on statins and aspirin treatment, potentially affecting the expression of genes in monocytes, twelve controls were subsequently treated with simvastatin and aspirin for 6 and 2 weeks, respectively
    • 

    corecore