353 research outputs found

    Timeline Summarization from Relevant Headlines

    Full text link

    r-Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole - Neutron Star Mergers

    Get PDF
    We consider hot accretion disk outflows from black hole - neutron star mergers in the context of the nucleosynthesis they produce. We begin with a three dimensional numerical model of a black hole - neutron star merger and calculate the neutrino and antineutrino fluxes emitted from the resulting accretion disk. We then follow the element synthesis in material outflowing the disk along parameterized trajectories. We find that at least a weak r-process is produced, and in some cases a main r-process as well. The neutron-rich conditions required for this production of r-process nuclei stem directly from the interactions of the neutrinos emitted by the disk with the free neutrons and protons in the outflow.Comment: 10 pages, 4 figures, one table and additional references adde

    Paradoxical autonomy in Japan’s platform economy

    Get PDF
    Crowdsourcing firms, their client firms and the government in Japan have advocated that crowd work provides opportunities for workers to enjoy autonomous working practices, enabling subpopulations such as women and the elderly who would otherwise be excluded from the labour market to find employment. This is far from the case. Instead, crowdsourcing is perhaps better considered a means, enabled by technological advances, by which to flexibilise the labour market. We have been witnessing a shift in the forms of domination and control imposed on labour from a direct, physical and onsite type of control to an indirect mechanism of domination that has rendered workers less visible while suppressing wages. This further implies that the paradoxical autonomy of crowd work is embedded in contemporary antagonism in Japanese employment relations

    Exploiting the Bipartite Structure of Entity Grids for Document Coherence and Retrieval

    Get PDF
    International audienceDocument coherence describes how much sense text makes in terms of its logical organisation and discourse flow. Even though coherence is a relatively difficult notion to quantify precisely, it can be approximated automatically. This type of coherence modelling is not only interesting in itself, but also useful for a number of other text processing tasks, including Information Retrieval (IR), where adjusting the ranking of documents according to both their relevance and their coherence has been shown to increase retrieval effectiveness.The state of the art in unsupervised coherence modelling represents documents as bipartite graphs of sentences and discourse entities, and then projects these bipartite graphs into one–mode undirected graphs. However, one–mode projections may incur significant loss of the information present in the original bipartite structure. To address this we present three novel graph metrics that compute document coherence on the original bipartite graph of sentences and entities. Evaluation on standard settings shows that: (i) one of our coherence metrics beats the state of the art in terms of coherence accuracy; and (ii) all three of our coherence metrics improve retrieval effectiveness because, as closer analysis reveals, they capture aspects of document quality that go undetected by both keyword-based standard ranking and by spam filtering. This work contributes document coherence metrics that are theoretically principled, parameter-free, and useful to IR

    Inflammation, insulin resistance, and diabetes-mendelian randomization using CRP haplotypes points upstream

    Get PDF
    Background Raised C-reactive protein (CRP) is a risk factor for type 2 diabetes. According to the Mendelian randomization method, the association is likely to be causal if genetic variants that affect CRP level are associated with markers of diabetes development and diabetes. Our objective was to examine the nature of the association between CRP phenotype and diabetes development using CRP haplotypes as instrumental variables. Methods and Findings We genotyped three tagging SNPs (CRP + 2302G > A; CRP + 1444T > C; CRP + 4899T > G) in the CRP gene and measured serum CRP in 5,274 men and women at mean ages 49 and 61 y (Whitehall II Study). Homeostasis model assessment-insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) were measured at age 61 y. Diabetes was ascertained by glucose tolerance test and self-report. Common major haplotypes were strongly associated with serum CRP levels, but unrelated to obesity, blood pressure, and socioeconomic position, which may confound the association between CRP and diabetes risk. Serum CRP was associated with these potential confounding factors. After adjustment for age and sex, baseline serum CRP was associated with incident diabetes (hazard ratio = 1.39 [95% confidence interval 1.29-1.51], HOMA-IR, and HbA1c, but the associations were considerably attenuated on adjustment for potential confounding factors. In contrast, CRP haplotypes were not associated with HOMA-IR or HbA1c (p=0.52-0.92). The associations of CRP with HOMA-IR and HbA1c were all null when examined using instrumental variables analysis, with genetic variants as the instrument for serum CRP. Instrumental variables estimates differed from the directly observed associations (p=0.007-0.11). Pooled analysis of CRP haplotypes and diabetes in Whitehall II and Northwick Park Heart Study II produced null findings (p=0.25-0.88). Analyses based on the Wellcome Trust Case Control Consortium (1,923 diabetes cases, 2,932 controls) using three SNPs in tight linkage disequilibrium with our tagging SNPs also demonstrated null associations. Conclusions Observed associations between serum CRP and insulin resistance, glycemia, and diabetes are likely to be noncausal. Inflammation may play a causal role via upstream effectors rather than the downstream marker CRP

    Inverse association between insulin resistance and gait speed in nondiabetic older men: results from the U.S. National Health and Nutrition Examination Survey (NHANES) 1999-2002

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have revealed the associations between insulin resistance (IR) and geriatric conditions such as frailty and cognitive impairment. However, little is known about the relation of IR to physical impairment and limitation in the aging process, eg. slow gait speed and poor muscle strength. The aim of this study is to determine the effect of IR in performance-based physical function, specifically gait speed and leg strength, among nondiabetic older adults.</p> <p>Methods</p> <p>Cross-sectional data were from the population-based National Health and Nutrition Examination Survey (1999-2002). A total of 1168 nondiabetic adults (≥ 50 years) with nonmissing values in fasting measures of insulin and glucose, habitual gait speed (HGS), and leg strength were analyzed. IR was assessed by homeostasis model assessment (HOMA-IR), whereas HGS and peak leg strength by the 20-foot timed walk test and an isokinetic dynamometer, respectively. We used multiple linear regression to examine the association between IR and performance-based physical function.</p> <p>Results</p> <p>IR was inversely associated with gait speed among the men. After adjusting demographics, body mass index, alcohol consumption, smoking status, chronic co-morbidities, and markers of nutrition and cardiovascular risk, each increment of 1 standard deviation in the HOMA-IR level was associated with a 0.04 m/sec decrease (p = 0.003) in the HGS in men. We did not find such association among the women. The IR-HGS association was not changed after further adjustment of leg strength. Last, HOMA-IR was not demonstrated in association with peak leg strength.</p> <p>Conclusion</p> <p>IR is inversely associated with HGS among older men without diabetes. The results suggest that IR, an important indicator of gait function among men, could be further investigated as an intervenable target to prevent walking limitation.</p

    Isolation of a small molecule inhibitor of DNA base excision repair

    Get PDF
    The base excision repair (BER) pathway is essential for the removal of DNA bases damaged by alkylation or oxidation. A key step in BER is the processing of an apurinic/apyrimidinic (AP) site intermediate by an AP endonuclease. The major AP endonuclease in human cells (APE1, also termed HAP1 and Ref-1) accounts for >95% of the total AP endonuclease activity, and is essential for the protection of cells against the toxic effects of several classes of DNA damaging agents. Moreover, APE1 overexpression has been linked to radio- and chemo-resistance in human tumors. Using a newly developed high-throughput screen, several chemical inhibitors of APE1 have been isolated. Amongst these, CRT0044876 was identified as a potent and selective APE1 inhibitor. CRT0044876 inhibits the AP endonuclease, 3′-phosphodiesterase and 3′-phosphatase activities of APE1 at low micromolar concentrations, and is a specific inhibitor of the exonuclease III family of enzymes to which APE1 belongs. At non-cytotoxic concentrations, CRT0044876 potentiates the cytotoxicity of several DNA base-targeting compounds. This enhancement of cytotoxicity is associated with an accumulation of unrepaired AP sites. In silico modeling studies suggest that CRT0044876 binds to the active site of APE1. These studies provide both a novel reagent for probing APE1 function in human cells, and a rational basis for the development of APE1-targeting drugs for antitumor therapy

    Associations of Insulin and Insulin-Like Growth Factors with Physical Performance in Old Age in the Boyd Orr and Caerphilly Studies

    Get PDF
    Objective Insulin and the insulin-like growth factor (IGF) system regulate growth and are involved in determining muscle mass, strength and body composition. We hypothesised that IGF-I and IGF-II are associated with improved, and insulin with worse, physical performance in old age. Methods Physical performance was measured using the get-up and go timed walk and flamingo balance test at 63–86 years. We examined prospective associations of insulin, IGF-I, IGF-II and IGFBP-3 with physical performance in the UK-based Caerphilly Prospective Study (CaPS; n = 739 men); and cross-sectional insulin, IGF-I, IGF-II, IGFBP-2 and IGFBP-3 in the Boyd Orr cohort (n = 182 men, 223 women). Results In confounder-adjusted models, there was some evidence in CaPS that a standard deviation (SD) increase in IGF-I was associated with 1.5% faster get-up and go test times (95% CI: −0.2%, 3.2%; p = 0.08), but little association with poor balance, 19 years later. Coefficients in Boyd Orr were in the same direction as CaPS, but consistent with chance. Higher levels of insulin were weakly associated with worse physical performance (CaPS and Boyd Orr combined: get-up and go time = 1.3% slower per SD log-transformed insulin; 95% CI: 0.0%, 2.7%; p = 0.07; OR poor balance 1.13; 95% CI; 0.98, 1.29; p = 0.08), although associations were attenuated after controlling for body mass index (BMI) and co-morbidities. In Boyd Orr, a one SD increase in IGFBP-2 was associated with 2.6% slower get-up and go times (95% CI: 0.4%, 4.8% slower; p = 0.02), but this was only seen when controlling for BMI and co-morbidities. There was no consistent evidence of associations of IGF-II, or IGFBP-3 with physical performance. Conclusions There was some evidence that high IGF-I and low insulin levels in middle-age were associated with improved physical performance in old age, but estimates were imprecise. Larger cohorts are required to confirm or refute the findings
    corecore