150 research outputs found

    Calculation of francium hyperfine anomaly

    Full text link
    The Dirac-Hartree-Fock plus many-body perturbation theory (DHF+MBPT) method has been used to calculate hyperfine structure constants for Fr. Calculated hyperfine structure anomaly for hydrogen-like ion has been shown to be in good agreement with analytical expressions. It has been shown that the ratio of the anomalies for ss and p1/2p_{1/2} states is weakly dependent on the principal quantum number. Finally, we estimate Bohr--Weisskopf corrections for several Fr isotopes. Our results may be used to improve experimental accuracy for the nuclear gg factors of short-lived isotopes.Comment: 5 pages, 3 tables, 2 figures. arXiv admin note: text overlap with arXiv:1703.1004

    The Bohr-Weisskopf effect in the potassium isotopes

    Full text link
    The magnetic hyperfine structure constants have been calculated for low-lying levels in neutral potassium atom taking into account the Bohr--Weisskopf (BW) and Breit--Rosenthal (BR) effects. According to our results the 4p1/24p_{1/2} state of K~I is free from both BR and BW corrections on the level of the current theoretical uncertainties. Using this finding and the measured values of the A(4p1/2)A(4p_{1/2}) constants, we corrected the nuclear magnetic moments for several short-lived potassium isotopes. The BW correction is represented as a product of atomic and nuclear factors. We calculated the atomic factor for the ground state of K I, which allowed us to extract nuclear factors for potassium Iπ=3/2+I^\pi = 3/2^+ isotopes from the experimental data. In this way the application range of the single-particle nuclear model for nuclear-factor calculation in these isotopes has been clarified

    In-source laser spectroscopy with the laser ion source and trap: first direct study of the ground-state properties of Po-217,Po-219

    Get PDF
    D. A. Fink et al.; 15 págs.; 17 figs.; 3 tabs.; Open Access funded by Creative Commons Atribution Licence 3.0A Laser Ion Source and Trap (LIST) for a thick-target, isotope-separation on-line facility has been implemented at CERN ISOLDE for the production of pure, laser-ionized, radioactive ion beams. It offers two modes of operation, either as an ion guide, which performs similarly to the standard ISOLDE resonance ionization laser ion source (RILIS), or as a more selective ion source, where surface-ionized ions from the hot ion-source cavity are repelled by an electrode, while laser ionization is done within a radiofrequency quadrupole ion guide. The first physics application of the LIST enables the suppression of francium contamination in ion beams of neutron-rich polonium isotopes at ISOLDE by more than 1000 with a reduction in laser-ionization efficiency of only 20. Resonance ionization spectroscopy is performed directly inside the LIST device, allowing the study of the hyperfine structure and isotope shift of 217Po for the first time. Nuclear decay spectroscopy of 219Po is performed for the first time, revealing its half-life, α- to-β-decay branching ratio, and α-particle energy. This experiment demonstrates the applicability of the LIST at radioactive ion-beam facilities for the production and study of pure beams of exotic isotopes. Published by the American Physical SocietyThis work was supported by the Bundesministerium für Bildung und Forschung (BMBF, Germany) within the Wolfgang- Gentner programme as well as through the consecutive project fundings of 06Mz9181I, 06Mz7177D, and 05P12UMCIA, by FWO-Vlaanderen (Belgium), by GOA/2010/010 (BOF-KULeuven), by the IUAP-Belgian State Belgian Science Policy (BRIX network P7/12), by the U.K. Science and Technology Facilities Council (STFC), by the European Union within FP7 (ENSAR No. 262010), by the Slovak Research and Development Agency (Contract No. APVV-0105-10), by the Slovak grant agency VEGA, and the Reimei Foundation of JAEA (Contract No. 1/0576/13). T. E. C. was supported by STFC Ernest Rutherford Grant No. ST/J004189/1.Peer Reviewe

    Early onset of ground-state deformation in the neutron-deficient polonium isotopes

    Full text link
    In-source resonant ionization laser spectroscopy of the even-AA polonium isotopes 192210,216,218^{192-210,216,218}Po has been performed using the 6p37s6p^37s 5S2^5S_2 to 6p37p6p^37p 5P2^5P_2 (λ=843.38\lambda=843.38 nm) transition in the polonium atom (Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope shifts in 200210^{200-210}Po with a previous data set allows to test for the first time recent large-scale atomic calculations that are essential to extract the changes in the mean-square charge radius of the atomic nucleus. When going to lighter masses, a surprisingly large and early departure from sphericity is observed, which is only partly reproduced by Beyond Mean Field calculations.Comment: As submitted to PR

    Changes in mean-squared charge radii and magnetic moments of Tl 179-184 measured by in-source laser spectroscopy

    Get PDF
    Hyperfine structure and isotope shifts have been measured for the ground and isomeric states in the neutron-deficient isotopes Tl179-184 using the 276.9-nm transition. The experiment has been performed at the CERN-Isotope Separator On-Line facility using the in-source resonance-ionization laser spectroscopy technique. Spins for the ground states in Tl179,181,183 have been determined as I=1/2. Magnetic moments and changes in the nuclear mean-square charge radii have been deduced. By applying the additivity relation for magnetic moments of the odd-odd Tl nuclei the leading configuration assignments were confirmed. A deviation of magnetic moments for isomeric states in Tl182,184 from the trend of the heavier Tl nuclei is observed. The charge radii of the ground states of the isotopes Tl179-184 follow the trend for isotonic (spherical) lead nuclei. The noticeable difference in charge radii for ground and isomeric states of Tl183,184 has been observed, suggesting a larger deformation for the intruder-based 9/2- and 10- states compared to the ground states. An unexpected growth of the isomer shift for Tl183 has been found

    Detailed α-decay study of 180Tl

    Get PDF
    International audienceA detailed α\alpha-decay spectroscopy study of 180Tl^{180}\mathrm{Tl} has been performed at ISOLDE (CERN). ZZ-selective ionization by the Resonance Ionization Laser Ion Source (RILIS) coupled to mass separation provided a high-purity beam of 180Tl^{180}\mathrm{Tl}. Fine-structure α\alpha decays to excited levels in the daughter 176Au^{176}\mathrm{Au} were identified and an α\alpha-decay scheme of 180Tl^{180}\mathrm{Tl} was constructed based on an analysis of α\alpha-γ\gamma and α\alpha-γ\gamma-γ\gamma coincidences. Multipolarities of several γ\gamma-ray transitions deexciting levels in 176Au^{176}\mathrm{Au} were determined. Based on the analysis of reduced α\alpha-decay widths, it was found that all α\alpha decays are hindered, which signifies a change of configuration between the parent and all daughter states
    corecore