306 research outputs found

    Weak-coupling phase diagrams of bond-aligned and diagonal doped Hubbard ladders

    Full text link
    We study, using a perturbative renormalization group technique, the phase diagrams of bond-aligned and diagonal Hubbard ladders defined as sections of a square lattice with nearest-neighbor and next-nearest-neighbor hopping. We find that for not too large hole doping and small next-nearest-neighbor hopping the bond-aligned systems exhibit a fully spin-gapped phase while the diagonal systems remain gapless. Increasing the next-nearest-neighbor hopping typically leads to a decrease of the gap in the bond-aligned ladders, and to a transition into a gapped phase in the diagonal ladders. Embedding the ladders in an antiferromagnetic environment can lead to a reduction in the extent of the gapped phases. These findings suggest a relation between the orientation of hole-rich stripes and superconductivity as observed in LSCO.Comment: Published version. The set of RG equations in the presence of magnetization was corrected and two figures were replace

    The Impact of a Community-Based Childhood Obesity Prevention Program on Children’s Physical Activity and Fitness

    Get PDF
    The purpose of this study is to determine the effects of South County Food, Fitness and Fun (SCFFF), a 16-week community-based obesity prevention program, on children’s moderate to vigorous physical activity (MVPA), physical fitness, body mass index (BMI), and BMI z-score. A non-randomized pre-test and post-test study design was used to assess changes in MVPA, physical fitness, BMI and BMI z-score from baseline to program end. MVPA was measured by accelerometer, physical fitness measured by Fitnessgram, and height and weight were measured by stadiometer and scale and used to calculate BMI. The analytic sample for this study included 53 children from nine SCFFF programs conducted between 2011-2016. There was a significant increase in the percentage of time children spent participating in MVPA (1.12%; p=0.022), curl-ups (p\u3c0.001) and trunk lifts (p=0.004). BMI z-score decreased (p\u3c0.001). Results reinforce the importance of offering community-based interventions that include caregivers to prevent excess weight gain in children

    Risk factors for early implant failure: a retrospective-multicentric study of 2323 implants in screw retained fixed full arch rehabilitation

    Get PDF
    Objectives: The aim of this retrospective study was to investigate possible risk factors for early implant failure in screw retained fixed full-arch rehabilitation. Methods: data of 487 patients (2323 implants) treated with full-arch rehabilitation supported by same implants brand were collected for the time period from 2017 to 2020 and examined to evaluate early implants failure rates. The following data were collected for statistical analysis: sex, age, health disorders (diabetes and hypertension) and bad habit (smoke) of the patient, location of the implant (maxilla or mandible, anterior or posterior site), type of implant's healing and bone regeneration procedures. Chi-squared test, bivariate comparison analysis and univariate mixed model analysis were used to estimate the effect of both patient-related and implant related variables on early implant failure as a potential risk factors. Results: 487 patients were included, 218 females (62.3 ± 9.14 of age) and 269 males (62.8 ± 10.11 of age) in 30 private institutions for a total of 2323 implants placed and a total of 526 screw retained fixed full arch rehabilitation. A total of 40 out of 2323 (1.7%) implants failed prematurely within 1 year, 32 in the maxilla 8 in the mandible. Bivariate comparison analysis and univariate mixed model analysis showed that female patient, implant placed in maxilla, age <61 years and submerged healed implants showed a statistically significant higher failure rate among the risk factors considered. Conclusions: Implants placed in the upper jaw and their modality of healing seems to be associated with a higher risk of early implant failure

    Acquisition of naturally occurring antibody responses to recombinant protein domains of Plasmodium falciparum erythrocyte membrane protein 1

    Get PDF
    Background: Antibodies targeting variant antigens expressed on the surface of Plasmodium falciparum infected erythrocytes have been associated with protection from clinical malaria. The precise target for these antibodies is unknown. The best characterized and most likely target is the erythrocyte surface-expressed variant protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Methods: Using recombinant proteins corresponding to five domains of the expressed A4 var gene, A4 PfEMP1, the naturally occurring antibody response was assessed, by ELISA, to each domain in serum samples obtained from individuals resident in two communities of differing malaria transmission intensity on the Kenyan coast. Using flow cytometry, the correlation in individual responses to each domain with responses to intact A4-infected erythrocytes expressing A4 PfEMP1 on their surface as well as responses to two alternative parasite clones and one clinical isolate was assessed. Results: Marked variability in the prevalence of responses between each domain and between each transmission area was observed, as wasa strong correlation between age and reactivity with some but not all domains. Individual responses to each domain varied strikingly, with some individuals showing reactivity to all domains and others with no reactivity to any, this was apparent at all age groups. Evidence for possible cross-reactivity in responses to the domain DBL4γ was found. Conclusion: Individuals acquire antibodies to surface expressed domains of a highly variant protein. The finding of potential cross-reactivity in responses to one of these domains is an important initial finding in the consideration of potential vaccine targets

    <i>Plasmodium falciparum </i>var genes expressed in children with severe malaria encode CIDRα1 domains

    Get PDF
    Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding human endothelial protein C receptor (EPCR) through the CIDRα1 domain of certain PfEMP1 were recently associated with severe malaria in children. However, it has remained unclear to which extend the EPCR‐binding CIDRα1 domains epitomize PfEMP1 expressed in severe malaria. Here, we characterized the near full‐length transcripts dominating the var transcriptome in children with severe malaria and found that the only common feature of the encoded PfEMP1 was CIDRα1 domains. Such genes were highly and dominantly expressed in both children with severe malarial anaemia and cerebral malaria. These observations support the hypothesis that the CIDRα1‐EPCR interaction is key to the pathogenesis of severe malaria and strengthen the rationale for pursuing a vaccine or adjunctive treatment aiming at inhibiting or reducing the damaging effects of this interaction

    Measurement of the cosmic ray hadron spectrum up to 30 TeV at mountain altitude: the primary proton spectrum

    Get PDF
    The flux of cosmic ray hadrons at the atmospheric depth of 820 g/cm^2 has been measured by means of the EAS-TOP hadron calorimeter (Campo Imperatore, National Gran Sasso Laboratories, 2005 m a.s.l.). The hadron spectrum is well described by a single power law : S(E_h) = (2.25 +- 0.21 +- 0.34(sys)) 10^(-7)(E_h/1000)^(-2.79 +- 0.05) m^(-2) s^(-1) sr^(-1) GeV^(-1) over the energy range 30 GeV-30 TeV. The procedure and the accuracy of the measurement are discussed. The primary proton spectrum is derived from the data by using the CORSIKA/QGSJET code to compute the local hadron flux as a function of the primary proton spectrum and to calculate and subtract the heavy nuclei contribution (basing on direct measurements). Over a wide energy range E_0 = 0.5-50 TeV its best fit is given by a single power law : S(E_0) = (9.8 +- 1.1 +- 1.6(sys)) 10^(-5) (E_0/1000)^(-2.80 +- 0.06) m^(-2) s^(-1) sr^(-1) GeV^(-1). The validity of the CORSIKA/QGSJET code for such application has been checked using the EAS-TOP and KASCADE experimental data by reproducing the ratio of the measured hadron fluxes at the two experimental depths (820 and 1030 g/cm^2 respectively) at better than 10% in the considered energy range.Comment: 16 pages, 9 figures, accepted for publication in Astroparticle Physic

    CR1 Knops blood group alleles are not associated with severe malaria in the Gambia

    Get PDF
    The Knops blood group antigen erythrocyte polymorphisms have been associated with reduced falciparum malaria-based in vitro rosette formation (putative malaria virulence factor). Having previously identified single-nucleotide polymorphisms (SNPs) in the human complement receptor 1 (CR1/CD35) gene underlying the Knops antithetical antigens Sl1/Sl2 and McC(a)/McC(b), we have now performed genotype comparisons to test associations between these two molecular variants and severe malaria in West African children living in the Gambia. While SNPs associated with Sl:2 and McC(b+) were equally distributed among malaria-infected children with severe malaria and control children not infected with malaria parasites, high allele frequencies for Sl 2 (0.800, 1,365/1,706) and McC(b) (0.385, 658/1706) were observed. Further, when compared to the Sl 1/McC(a) allele observed in all populations, the African Sl 2/McC(b) allele appears to have evolved as a result of positive selection (modified Nei-Gojobori test Ka-Ks/s.e.=1.77, P-value &lt;0.05). Given the role of CR1 in host defense, our findings suggest that Sl 2 and McC(b) have arisen to confer a selective advantage against infectious disease that, in view of these case-control study data, was not solely Plasmodium falciparum malaria. Factors underlying the lack of association between Sl 2 and McC(b) with severe malaria may involve variation in CR1 expression levels

    CD36 selection of 3D7 Plasmodium falciparum associated with severe childhood malaria results in reduced VAR4 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A subset of the <it>Plasmodium falciparum </it>erythrocyte membrane protein 1 (PfEMP1<sub>SM</sub>) is involved in the cytoadherence of <it>P. falciparum</it>-infected red blood cells (iRBC) contributing to the pathogenesis of severe disease among young children in malaria endemic areas. The PfEMP1<sub>SM </sub>are encoded by group A <it>var </it>genes that are composed of a more constrained range of amino acid sequences than groups B and C <it>var </it>genes encoding PfEMP1<sub>UM </sub>associated with uncomplicated malaria. Also, unlike <it>var </it>genes from groups B and C, those from group A do not have sequences consistent with CD36 binding – a major cytoadhesion phenotype of <it>P. falciparum </it>isolates.</p> <p>Methods</p> <p>A 3D7 PfEMP1<sub>SM </sub>sub-line (3D7<sub>SM</sub>) expressing VAR4 (PFD1235w/MAL8P1.207) was selected for binding to CD36. The protein expression of this parasite line was monitored by surface staining of iRBC using VAR4-specific antibodies. The serological phenotype of the 3D7<sub>SM </sub>parasites was determined by flow cytometry using malaria semi-immune and immune plasma and transcription of the 59 <it>var </it>genes in 3D7 were analysed by real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) using <it>var</it>-specific primers.</p> <p>Results</p> <p>A selection-induced increased adhesion of 3D7<sub>SM </sub>iRBC to CD36 resulted in a reduced <it>var4 </it>transcription and VAR4 surface expression.</p> <p>Conclusion</p> <p>VAR4 is not involved in CD36 adhesion. The current findings are consistent with the notion that CD36 adhesion is not associated with particular virulent parasite phenotypes, such as those believed to be exhibited by VAR4 expressing parasites.</p

    The Cysteine-Rich Interdomain Region from the Highly Variable Plasmodium falciparum Erythrocyte Membrane Protein-1 Exhibits a Conserved Structure

    Get PDF
    Plasmodium falciparum malaria parasites, living in red blood cells, express proteins of the erythrocyte membrane protein-1 (PfEMP1) family on the red blood cell surface. The binding of PfEMP1 molecules to human cell surface receptors mediates the adherence of infected red blood cells to human tissues. The sequences of the 60 PfEMP1 genes in each parasite genome vary greatly from parasite to parasite, yet the variant PfEMP1 proteins maintain receptor binding. Almost all parasites isolated directly from patients bind the human CD36 receptor. Of the several kinds of highly polymorphic cysteine-rich interdomain region (CIDR) domains classified by sequence, only the CIDR1α domains bind CD36. Here we describe the CD36-binding portion of a CIDR1α domain, MC179, as a bundle of three α-helices that are connected by a loop and three additional helices. The MC179 structure, containing seven conserved cysteines and 10 conserved hydrophobic residues, predicts similar structures for the hundreds of CIDR sequences from the many genome sequences now known. Comparison of MC179 with the CIDR domains in the genome of the P. falciparum 3D7 strain provides insights into CIDR domain structure. The CIDR1α three-helix bundle exhibits less than 20% sequence identity with the three-helix bundles of Duffy-binding like (DBL) domains, but the two kinds of bundles are almost identical. Despite the enormous diversity of PfEMP1 sequences, the CIDR1α and DBL protein structures, taken together, predict that a PfEMP1 molecule is a polymer of three-helix bundles elaborated by a variety of connecting helices and loops. From the structures also comes the insight that DBL1α domains are approximately 100 residues larger and that CIDR1α domains are approximately 100 residues smaller than sequence alignments predict. This new understanding of PfEMP1 structure will allow the use of better-defined PfEMP1 domains for functional studies, for the design of candidate vaccines, and for understanding the molecular basis of cytoadherence

    Landau-Zener-Stuckelberg interferometry

    Full text link
    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stuckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stuckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.Comment: 34 single-column pages, 11 figure
    corecore