8 research outputs found

    Nuclear phosphoproteome of developing chickpea seedlings (Cicer arietinum L.) and protein-kinase interaction network

    No full text
    Nucleus, the control centre of eukaryotic cell, houses most of the genetic machineries required for gene expression and their regulation. Post translational modifications of proteins, particularly phosphorylation control a wide variety of cellular processes but its functional connectivity, in plants, is still elusive. This study profiled the nuclear phosphoproteome of a grain legume, chickpea, to gain better understanding of such event. Intact nuclei were isolated from 3-week-old seedlings using two independent methods, and nuclear proteins were resolved by 2-DE. In a separate set of experiments, phosphoproteins were enriched using IMAC method and resolved by 1-DE. The separated proteins were stained with phosphospecific Pro-Q Diamond stain. Proteomic analyses led to the identification of 107 putative phosphoproteins, of which 86 were non-redundant. Multiple sites of phosphorylation were predicted on several key elements, which included both regulatory and functional proteins. The analysis revealed an array of phosphoproteins, presumably involved in a variety of cellular functions, viz., protein folding (24%), signalling and gene regulation (22%), DNA replication, repair and modification (16%), and metabolism (13%), among others. These results represent the first nucleus-specific phosphoproteome map of a non-model legume, which would provide insights into the possible function of protein phosphorylation in plants

    Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response

    No full text
    Reversible protein phosphorylation is a ubiquitous regulatory mechanism that plays critical roles in transducing stress signals to bring about coordinated intracellular responses. To gain better understanding of dehydration response in plants, we have developed a differential phosphoproteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water, and the changes in the phosphorylation status of a large repertoire of proteins were monitored. The proteins were resolved by 2-DE and stained with phosphospecific fluorescent Pro-Q Diamond dye. Mass spectrometric analysis led to the identification of 91 putative phosphoproteins, presumably involved in a variety of functions including cell defense and rescue, photosynthesis and photorespiration, molecular chaperones, and ion transport, among others. Multiple sites of phosphorylation were predicted on several key elements, which include both the regulatory as well as the functional proteins. A critical survey of the phosphorylome revealed a DREPP (developmentally regulated plasma membrane protein) plasma membrane polypeptide family protein, henceforth designated CaDREPP1. The transcripts of CaDREPP1 were found to be differentially regulated under dehydration stress, further corroborating the proteomic results. This work provides new insights into the possible phosphorylation events triggered by the conditions of progressive water-deficit in plants

    Phosphoproteomic Dynamics of Chickpea (<i>Cicer arietinum</i> L.) Reveals Shared and Distinct Components of Dehydration Response

    No full text
    Reversible protein phosphorylation is a ubiquitous regulatory mechanism that plays critical roles in transducing stress signals to bring about coordinated intracellular responses. To gain better understanding of dehydration response in plants, we have developed a differential phosphoproteome in a food legume, chickpea (<i>Cicer arietinum</i> L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water, and the changes in the phosphorylation status of a large repertoire of proteins were monitored. The proteins were resolved by 2-DE and stained with phosphospecific fluorescent Pro-Q Diamond dye. Mass spectrometric analysis led to the identification of 91 putative phosphoproteins, presumably involved in a variety of functions including cell defense and rescue, photosynthesis and photorespiration, molecular chaperones, and ion transport, among others. Multiple sites of phosphorylation were predicted on several key elements, which include both the regulatory as well as the functional proteins. A critical survey of the phosphorylome revealed a DREPP (developmentally regulated plasma membrane protein) plasma membrane polypeptide family protein, henceforth designated CaDREPP1. The transcripts of <i>CaDREPP1</i> were found to be differentially regulated under dehydration stress, further corroborating the proteomic results. This work provides new insights into the possible phosphorylation events triggered by the conditions of progressive water-deficit in plants

    Clinical Characterization and Genomic Analysis of Samples from COVID-19 Breakthrough Infections during the Second Wave among the Various States of India

    No full text
    From March to June 2021, India experienced a deadly second wave of COVID-19, with an increased number of post-vaccination breakthrough infections reported across the country. To understand the possible reason for these breakthroughs, we collected 677 clinical samples (throat swab/nasal swabs) of individuals from 17 states/Union Territories of the country who had received two doses (n = 592) and one dose (n = 85) of vaccines and tested positive for COVID-19. These cases were telephonically interviewed and clinical data were analyzed. A total of 511 SARS-CoV-2 genomes were recovered with genome coverage of higher than 98% from both groups. Analysis of both groups determined that 86.69% (n = 443) of them belonged to the Delta variant, along with Alpha, Kappa, Delta AY.1, and Delta AY.2. The Delta variant clustered into four distinct sub-lineages. Sub-lineage I had mutations in ORF1ab A1306S, P2046L, P2287S, V2930L, T3255I, T3446A, G5063S, P5401L, and A6319V, and in N G215C; Sub-lineage II had mutations in ORF1ab P309L, A3209V, V3718A, G5063S, P5401L, and ORF7a L116F; Sub-lineage III had mutations in ORF1ab A3209V, V3718A, T3750I, G5063S, and P5401L and in spike A222V; Sub-lineage IV had mutations in ORF1ab P309L, D2980N, and F3138S and spike K77T. This study indicates that majority of the breakthrough COVID-19 clinical cases were infected with the Delta variant, and only 9.8% cases required hospitalization, while fatality was observed in only 0.4% cases. This clearly suggests that the vaccination does provide reduction in hospital admission and mortality

    Not Available

    No full text
    Not AvailableSymbiotic (Rhizobia, Frankia, and VAM) or free-living (Azotobacter, and Clostridium) association of plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF) is essential for plant and soil health. Nitrogen (N), phosphorus (P) and potassium (K) as major and iron (Fe) and zinc (Zn) as the minor elements are key to plant health. They are important constituents of plant genetic material (N, P) and chlorophyll content (N, Fe) and important for enzymatic activities (Fe, Zn) and are involved in many biochemical and physiological activities. The ‘microbiome’ around the rhizosphere is specific to plant type and involved in nutrient cycling through various processes such as fixation (N), solubilization, mineralization (P, K) and uptake, with the help of various organic acids (gluconic acid, oxalic acid, and tartaric acid), siderophore activity (Fe uptake) and enzymatic actions (nitrogenase, phytases, and acid phosphatases). Phytohormones essential to plant growth and development are produced by microbes themselves or induce their production via other hormones or communication chemicals, viz., volatile organic compounds (VOCs) like 2-pentylfuran, 2,3-butanediol and acetonin. PGPR (Pseudomonas, Trichoderma and Streptomyces) helps the host plant to fight against various abiotic and biotic stresses by the release of bactericidal and fungicidal enzymes, metabolite accumulation and induced systemic resistance (ISR), systemic acquired resistance (SAR) by phytohormones (jasmonic acid, salicylic acid, and ethylene) and VOCs. Attributing to so many benefits, microbes are increasingly becoming part of sustainable agriculture where PGPR (Rhizobium and Pseudomonas) and fungi (Aspergillus, Trichoderma and VAM) are being used as biofertilizers either single strained or in consortia approach, where the latter is found to be more beneficial for plant and soil health.Not Availabl
    corecore