6 research outputs found

    Improvement of the impact resistance of natural fiber–reinforced polypropylene composites through hybridization

    Get PDF
    Polypropylene (PP) hybrid composites were prepared by the combination of naturalreinforcements and poly(ethylene terephthalate) (PET) fibers. Wood, flax, and sugarpalm fibers were used to increase stiffness and strength, while PET fibers served toimprove impact resistance. Interfacial adhesion was increased by using a maleated PP(MAPP) coupling agent. The hybrid composites containing 20 wt% of the naturalfibers were homogenized in a twin-screw compounder and then injection moldedinto standard tensile specimens. The amount of PET fibers was changed from 0 to40 wt% in the composites. Tensile and impact testing, acoustic emission measure-ments, and scanning electron microscopy (SEM) were used for the characterizationof the composites as well as to follow deformation and failure processes. The resultsproved that the concept of using PET fibers to improve impact resistance works withall natural fibers. Local deformations, the debonding or pullout of the PET fibers, initi-ate the plastic deformation of the matrix, which consumes considerable energy. Thefracture of PET fibers might also contribute to energy absorption. The type of naturalfiber does not influence the effect; the amount of PET fibers determines fractureresistance. The improvement of interfacial adhesion by coupling increases strengthand slightly improves impact resistance. The overall properties of the hybrid compos-ites prepared are acceptable, sufficiently large stiffness and impact resistance beingachieved for a large number of structural application

    Complicated Postoperative Flat Back Deformity Correction With the Aid of Virtual and 3D Printed Anatomical Models: Case Report

    Get PDF
    Introduction: The number of patients with iatrogenic spinal deformities is increasing due to the increase in instrumented spinal surgeries globally. Correcting a deformity could be challenging due to the complex anatomical and geometrical irregularities caused by previous surgeries and spine degeneration. Virtual and 3D printed models have the potential to illuminate the unique and complex anatomical-geometrical problems found in these patients. Case Presentation: We present a case report with 6-months follow-up (FU) of a 71 year old female patient with severe sagittal and coronal malalignment due to repetitive discectomy, decompression, laminectomy, and stabilization surgeries over the last 39 years. The patient suffered from severe low back pain (VAS = 9, ODI = 80). Deformity correction by performing asymmetric 3-column pedicle subtraction osteotomy (PSO) and stabilization were decided as the required surgical treatment. To better understand the complex anatomical condition, a patient-specific virtual geometry was defined by segmentation based on the preoperative CT. The geometrical accuracy was tested using the Dice Similarity Index (DSI). A complex 3D virtual plan was created for the surgery from the segmented geometry in addition to a 3D printed model. Discussion: The segmentation process provided a highly accurate geometry (L1 to S2) with a DSI value of 0.92. The virtual model was shared in the internal clinical database in 3DPDF format. The printed physical model was used in the preoperative planning phase, patient education/communication and during the surgery. The surgery was performed successfully, and no complications were registered. The measured change in the sagittal vertical axis was 7 cm, in the coronal plane the distance between the C7 plumb line and the central sacral vertical line was reduced by 4 cm. A 30° correction was achieved for the lumbar lordosis due to the PSO at the L4 vertebra. The patient ODI was reduced to 20 points at the 6-months FU. Conclusions: The printed physical model was considered advantageous by the surgical team in the pre-surgical phase and during the surgery as well. The model was able to simplify the geometrical problems and potentially improve the outcome of the surgery by preventing complications and reducing surgical time

    GIS: State Monitoring Tool for Pipelines

    No full text
    Analysis of the breakdown-statistics of the Hungarian crude and gas pipeline system dating back more than 20 years shows the main sources of the errors. In order to prevent these, we have started a vast program regarding state monitoring of pipelines by means of the common use of on-line and above-ground methodes. Related expenses are as high as 8% of maintenance costs. Manual handling and analysing of the available and continually increasing data nowadays is already insoluble."/jats:p" "jats:p"To solve the problem, we have decided to develop an integrated information system that integrates the technical data with the up-to-date GIS applications, thus providing a wide-range application possibility for the operating staff."/jats:p" "jats:p"Integrity analysis is supported by the system, which shows the various examination results in a comparable way, their change in time can be followed, and there is a possibility to automatically compare them sinchronously with map displaying. The system is able to receive and process the results of outer examination (for example such as of an intelligent pipe scraper), but the sinchronous transmission into outer systems is also possible."/jats:p" "jats:p"The development of the information system and especially the input of the data into the system is possible only at great costs but the usefulness of the application and the turnover of the investment can be, even if only undirectly, proved

    Development of DNA Markers From Physically Mapped Loci in Aegilops comosa and Aegilops umbellulata Using Single-Gene FISH and Chromosome Sequences

    No full text
    Breeding of agricultural crops adapted to climate change and resistant to diseases and pests is hindered by a limited gene pool because of domestication and thousands of years of human selection. One way to increase genetic variation is chromosome-mediated gene transfer from wild relatives by cross hybridization. In the case of wheat (Triticum aestivum), the species of genus Aegilops are a particularly attractive source of new genes and alleles. However, during the evolution of the Aegilops and Triticum genera, diversification of the D-genome lineage resulted in the formation of diploid C, M, and U genomes of Aegilops. The extent of structural genome alterations, which accompanied their evolution and speciation, and the shortage of molecular tools to detect Aegilops chromatin hamper gene transfer into wheat. To investigate the chromosome structure and help develop molecular markers with a known physical position that could improve the efficiency of the selection of desired introgressions, we developed single-gene fluorescence in situ hybridization (FISH) maps for M- and U-genome progenitors, Aegilops comosa and Aegilops umbellulata, respectively. Forty-three ortholog genes were located on 47 loci in Ae. comosa and on 52 loci in Ae. umbellulata using wheat cDNA probes. The results obtained showed that M-genome chromosomes preserved collinearity with those of wheat, excluding 2 and 6M containing an intrachromosomal rearrangement and paracentric inversion of 6ML, respectively. While Ae. umbellulata chromosomes 1, 3, and 5U maintained collinearity with wheat, structural reorganizations in 2, 4, 6, and 7U suggested a similarity with the C genome of Aegilops markgrafii. To develop molecular markers with exact physical positions on chromosomes of Aegilops, the single-gene FISH data were validated in silico using DNA sequence assemblies from flow-sorted M- and U-genome chromosomes. The sequence similarity search of cDNA sequences confirmed 44 out of the 47 single-gene loci in Ae. comosa and 40 of the 52 map positions in Ae. umbellulata. Polymorphic regions, thus, identified enabled the development of molecular markers, which were PCR validated using wheat-Aegilops disomic chromosome addition lines. The single-gene FISH-based approach allowed the development of PCR markers specific for cytogenetically mapped positions on Aegilops chromosomes, substituting as yet unavailable segregating map. The new knowledge and resources will support the efforts for the introgression of Aegilops genes into wheat and their cloning.Funding Agencies|ERDF project Plants as a Tool for Sustainable Global Development [CZ.02.1.01/0.0/0.0/16_019/0000827]; Hungarian National Research, Development and Innovation OfficeNational Research, Development &amp; Innovation Office (NRDIO) - Hungary [K135057]; Marie Curie Fellowship Grant award AEGILWHEAT [H2020-MSCA-IF-2016-746253]; ELIXIR-CZ project [LM2015047]; project e-Infrastruktura CZ within the program Projects of Large Research, Development and Innovations Infrastructures [LM2018140]</p

    Estrone

    No full text
    corecore