393 research outputs found

    Acute Stress Increases Sex Differences in Risk Seeking in the Balloon Analogue Risk Task

    Get PDF
    BACKGROUND:Decisions involving risk often must be made under stressful circumstances. Research on behavioral and brain differences in stress responses suggest that stress might have different effects on risk taking in males and females. METHODOLOGY/PRINCIPAL FINDINGS:In this study, participants played a computer game designed to measure risk taking (the Balloon Analogue Risk Task) fifteen minutes after completing a stress challenge or control task. Stress increased risk taking among men but decreased it among women. CONCLUSIONS/SIGNIFICANCE:Acute stress amplifies sex differences in risk seeking; making women more risk avoidant and men more risk seeking. Evolutionary principles may explain these stress-induced sex differences in risk taking behavior

    Effects of Housing Social Context on Emotional Behaviour and Physiological Responses in Female Mice

    Get PDF
    In laboratory breeding procedures, mice are usually housed in single-sex unfamiliar groups since weaning,  while individual housing is widely employed in many experimental settings. While there is a considerable  amount of evidence on the behavioural and physiological effects of various social contexts in male mice  and rats, few data are available on female mice. We examined short-term modulation of social context in the  housing environment on exploratory and emotional behaviours in response to novelty (i.e., free-exploratory  open field) and on physiology (i.e. organs and body weight, and basal corticosterone level) of female CD1  mice, taking into account the estrous phase as an additional variable. Living alone or grouped with siblings  or with unfamiliar females for a short period (7 days) did not affect any physiological indexes of stress in  female house mice and had marginal effects on emotional behaviour. When challenged with a free choice  between a novel environment and their home cage, female mice housed with siblings did not differ on any  behavioural parameter from females housed with same-aged unfamiliar mice, while individually housed  females showed higher propensity to enter the novel arena but no differences in activity or in anxiety as  compared to grouped mice. Information about sex specifics under standard housing conditions as well as in  response to common laboratory procedures could be important for the understanding of sex differences in  vulnerability to psychiatric disorders and response to drug treatment.

    Metabolic Consequences and Vulnerability to Diet-Induced Obesity in Male Mice under Chronic Social Stress

    Get PDF
    Social and psychological factors interact with genetic predisposition and dietary habit in determining obesity. However, relatively few pre-clinical studies address the role of psychosocial factors in metabolic disorders. Previous studies from our laboratory demonstrated in male mice: 1) opposite status-dependent effect on body weight gain under chronic psychosocial stress; 2) a reduction in body weight in individually housed (Ind) male mice. In the present study these observations were extended to provide a comprehensive characterization of the metabolic consequences of chronic psychosocial stress and individual housing in adult CD-1 male mice. Results confirmed that in mice fed standard diet, dominant (Dom) and Ind had a negative energy balance while subordinate (Sub) had a positive energy balance. Locomotor activity was depressed in Sub and enhanced in Dom. Hyperphagia emerged for Dom and Sub and hypophagia for Ind. Dom also showed a consistent decrease of visceral fat pads weight as well as increased norepinephrine concentration and smaller adipocytes diameter in the perigonadal fat pad. On the contrary, under high fat diet Sub and, surprisingly, Ind showed higher while Dom showed lower vulnerability to obesity associated with hyperphagia. In conclusion, we demonstrated that social status under chronic stress and individual housing deeply affect mice metabolic functions in different, sometime opposite, directions. Food intake, the hedonic response to palatable food as well as the locomotor activity and the sympathetic activation within the adipose fat pads all represent causal factors explaining the different metabolic alterations observed. Overall this study demonstrates that pre-clinical animal models offer a suitable tool for the investigation of the metabolic consequences of chronic stress exposure and associated psychopathologies

    Role of clathrin in dense core vesicle biogenesis

    Get PDF
    The dense-core vesicles (DCVs) of neuroendocrine cells are a rich source of bioactive molecules such as peptides, hormones, and neurotransmitters, but relatively little is known about how they are formed. Using fractionation profiling, a method that combines subcellular fractionation with mass spectrometry, we identified ∼1200 proteins in PC12 cell vesicle-enriched fractions, with DCV-associated proteins showing distinct profiles from proteins associated with other types of vesicles. To investigate the role of clathrin in DCV biogenesis, we stably transduced PC12 cells with an inducible shRNA targeting clathrin heavy chain, resulting in ∼85% protein loss. DCVs could still be observed in the cells by electron microscopy, but mature profiles were ∼4-fold less abundant than in mock-treated cells. By quantitative mass spectrometry, DCV-associated proteins were found to be reduced ∼2-fold in clathrin-depleted cells as a whole and ∼5-fold in vesicle-enriched fractions. Our combined datasets enabled us to identify new candidate DCV components. Secretion assays revealed that clathrin depletion causes a near-complete block in secretagogue-induced exocytosis. Taken together, our data indicate that clathrin has a function in DCV biogenesis beyond its established role in removing unwanted proteins from the immature vesicle.This work was funded by grants from the Wellcome Trust: 086598 (to M.S.R.), 100140 (Wellcome Trust Strategic Award), and 093026 (for the FEI Tecnai G2 Spirit BioTWIN transmission EM); and by a National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases grant (R01DK102496) to A.B

    The effect of stress on the expression of the amyloid precursor protein in rat brain

    Get PDF
    AbstractThe abnormal processing of the amyloid precursor protein (APP) is a pivotal event in the development of the unique pathology that defines Alzheimer's disease (AD). Stress, and the associated increase in corticosteroids, appear to accelerate brain ageing and may increase vulnerability to Alzheimer's disease via altered APP processing. In this study, rats were repeatedly exposed to an unavoidable stressor, an open elevated platform. Previous studies in this laboratory have shown that a single exposure produces a marked increase in plasma corticosterone levels but animals develop tolerance to this effect between 10 and 20 daily sessions. Twenty-four hours after stress, there was an increase in the ratio of the deglycosylated form of APP in the particulate fraction of the brain, which subsequently habituated after 20 days. The levels of soluble APP (APPs) tended to be lower in the stress groups compared to controls except for a significant increase in the hippocampus after 20 days of platform exposure. Since APPs is reported to have neurotrophic properties, this increased release may represent a neuroprotective response to repeated stress. It is possible that the ability to mount this response decreases with age thus increasing the vulnerability to stress-induced AD-related pathology

    Acute Overactive Endocannabinoid Signaling Induces Glucose Intolerance, Hepatic Steatosis, and Novel Cannabinoid Receptor 1 Responsive Genes

    Get PDF
    Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1). Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we show that a single administration of isopropyl dodecylfluorophosphonate (IDFP), perhaps the most potent pharmacological inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG) and induces insulin resistance in mice. These effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251) and in CB1 knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we performed microarrays on hepatic RNA isolated from DMSO (control), IDFP and AM251/IDFP-treated mice. The gene for the secreted glycoprotein lipocalin 2 (lcn2), which has been implicated in obesity and insulin resistance, was among those most responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal cluster analysis and AM251 pre-administration reduced (>50%) the majority (303 of 533) of the IDFP induced alterations. Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation and insulin resistance, at least in part through the CB1 receptor, and identify novel cannabinoid responsive genes

    An efficient and reproducible method for transformation of genetically recalcitrant bifidobacteria

    Get PDF
    This study describes an efficient transformation system for the introduction of plasmid DNA into Bifidobacterium bifidum PRL2010 and Bifidobacterium asteroides PRL2011, for which to the best of our knowledge no transformation data have been reported previously. The method is based on electroporation of bifidobacterial cells, which were made competent by an optimized methodology based on varying media and growth conditions. Furthermore, the transformation protocol was applied in order to design a PRL2010-derivative, which carries antibiotic resistance against chloramphenicol and which was used to monitor PRL2010 colonization in a murine model

    The molecular identity of the TLQP-21 peptide receptor

    Get PDF
    The TLQP-21 neuropeptide has been implicated in functions as diverse as lipolysis, neurodegeneration and metabolism, thus suggesting an important role in several human diseases. Three binding targets have been proposed for TLQP-21: C3aR1, gC1qR and HSPA8. The aim of this review is to critically evaluate the molecular identity of the TLQP-21 receptor and the proposed multi-receptor mechanism of action. Several studies confirm a critical role for C3aR1 in TLQP-21 biological activity and a largely conserved mode of binding, receptor activation and signaling with C3a, its first-identified endogenous ligand. Conversely, data supporting a role of gC1qR and HSPA8 in TLQP-21 activity remain limited, with no signal transduction pathways being described. Overall, C3aR1 is the only receptor for which a necessary and sufficient role in TLQP-21 activity has been confirmed thus far. This conclusion calls into question the validity of a multi-receptor mechanism of action for TLQP-21 and should inform future studies

    Hypothalamic over-expression of VGF in the Siberian hamster increases energy expenditure and reduces body weight gain

    Get PDF
    VGF (non-acronymic) was first highlighted to have a role in energy homeostasis through experiments involving dietary manipulation in mice. Fasting increased VGF mRNA in the Arc and levels were subsequently reduced upon refeeding. This anabolic role for VGF was supported by observations in a VGF null (VGF-/-) mouse and in the diet-induced and gold-thioglucose obese mice. However, this anabolic role for VGF has not been supported by a number of subsequent studies investigating the physiological effects of VGF-derived peptides. Intracerebroventricular (ICV) infusion of TLQP-21 increased resting energy expenditure and rectal temperature in mice and protected against diet-induced obesity. Similarly, ICV infusion of TLQP-21 into Siberian hamsters significantly reduced body weight, but this was due to a decrease in food intake, with no effect on energy expenditure. Subsequently NERP-2 was shown to increase food intake in rats via the orexin system, suggesting opposing roles for these VGF-derived peptides. Thus to further elucidate the role of hypothalamic VGF in the regulation of energy homeostasis we utilised a recombinant adeno-associated viral vector to over-express VGF in adult male Siberian hamsters, thus avoiding any developmental effects or associated functional compensation. Initially, hypothalamic over-expression of VGF in adult Siberian hamsters produced no effect on metabolic parameters, but by 12 weeks post-infusion hamsters had increased oxygen consumption and a tendency to increased carbon dioxide production; this attenuated body weight gain, reduced interscapular white adipose tissue and resulted in a compensatory increase in food intake. These observed changes in energy expenditure and food intake were associated with an increase in the hypothalamic contents of the VGF-derived peptides AQEE, TLQP and NERP-2. The complex phenotype of the VGF-/- mice is a likely consequence of global ablation of the gene and its derived peptides during development, as well as in the adult

    Stochastic variation of transcript abundance in C57BL/6J mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcripts can exhibit significant variation in tissue samples from inbred laboratory mice. We have designed and carried out a microarray experiment to examine transcript variation across samples from adipose, heart, kidney, and liver tissues of C57BL/6J mice and to partition variation into within-mouse and between-mouse components. Within-mouse variance captures variation due to heterogeneity of gene expression within tissues, RNA-extraction, and array processing. Between-mouse variance reflects differences in transcript abundance between genetically identical mice.</p> <p>Results</p> <p>The nature and extent of transcript variation differs across tissues. Adipose has the largest total variance and the largest within-mouse variance. Liver has the smallest total variance, but it has the most between-mouse variance. Genes with high variability can be classified into groups with correlated patterns of expression that are enriched for specific biological functions. Variation between mice is associated with circadian rhythm, growth hormone signaling, immune response, androgen regulation, lipid metabolism, and the extracellular matrix. Genes showing correlated patterns of within-mouse variation are also associated with biological functions that largely reflect heterogeneity of cell types within tissues.</p> <p>Conclusions</p> <p>Genetically identical mice can experience different individual outcomes for medically important traits. Variation in gene expression observed between genetically identical mice can identify functional classes of genes that are likely to vary in the absence of experimental perturbations, can inform experimental design decisions, and provides a baseline for the interpretation of gene expression data in interventional studies. The extent of transcript variation among genetically identical mice underscores the importance of stochastic and micro-environmental factors and their phenotypic consequences.</p
    corecore