6,282 research outputs found

    First Report of the Alfalfa Blotch Leafminer (Diptera: Agromyzidae), and Selected Parasites (Hymenoptera: Eulophidae) in Minnesota and Wisconsin, USA

    Get PDF
    Alfalfa blotch leafminer, Agromyza frontella, has been a serious pest of alfalfa, Medicago sativa, in the northeastern U.S. and in eastern Ontario, Canada. Until recently, the western edge of the A. frontella distribution in the U.S. was limited to eastern Ohio. We document for the first time, the occurrence of A. frontella in Minnesota and Wisconsin. Alfalfa stems damaged by A. frontella, based on adult feeding punctures, obvious blotched leafmining or the presence of larvae, were first found in 3 northern Minnesota coun­ties during October, 1994. Infested counties included Lake of the Woods, Cook and Lake, all bordering western Ontario, Canada. In 1995, A. frontella was again found in Cook and Lake counties, where 99-100% of the stems, and 18-35% of the trifoliates/stem, contained larvae or exhibited obvious feeding damage. In 1996, following a more expanded survey, a total of 11 and 5 counties, in Minnesota and Wisconsin, respectively, showed some level of A. frontella feeding damage (stem samples ranged from \u3c5 to 100% infested). Based on additional counties surveyed 11 October, 1996, where A. frontella was not found, we now have a reasonable estimate of the southern edge of the distribution in Minnesota and Wisconsin. A total of 2 and 6 A. frontella adults were identified from sweep-net samples taken from fields with obvious feeding damage during 1995 (Lake Co.) and 1996 (Cook Co,), respectively. Three eulophid (Hymenoptera) parasites were reared from A. frontella-infested alfalfa stems collected during October, 1994 in Cook Co., Minn., including: Diglyphus begini, D. pulchripes, and Diglyphus sp., prob. isaea, all of which are new records. Our hypothesis is that A. frontella moved into Minnesota from Ontario Canada, via alfalfa hay purchased by northern Minnesota growers

    Geometric Scaling in Inclusive Charm Production

    Get PDF
    We show that the cross section for inclusive charm production exhibits geometric scaling in a large range of photon virtualities. In the HERA kinematic domain the saturation momentum Qsat2(x)Q_{sat}^2(x) stays below the hard scale μc2=4mc2\mu_c^2=4m_c^2, implying charm production probing mostly the color transparency regime and unitarization effects being almost negligible. We derive our results considering two saturation models which are able to describe the DESY ep collider HERA data for the proton structure function at small values of the Bjorken variable xx. A striking feature is the scaling on τ=Q22/Qsat2(x)\tau=Q_2^2/Q_{sat}^2(x) above saturation limit, corroborating recent theoretical studies.Comment: 4 pages, 2 figures. Version to be published in Physical Review Letter

    Survival probability of large rapidity gaps in QCD and N=4 SYM motivated model

    Full text link
    In this paper we present a self consistent theoretical approach for the calculation of the Survival Probability for central dijet production . These calculations are performed in a model of high energy soft interactions based on two ingredients:(i) the results of N=4 SYM, which at the moment is the only theory that is able to deal with a large coupling constant; and (ii) the required matching with high energy QCD. Assuming, in accordance with these prerequisites, that soft Pomeron intercept is rather large and the slope of the Pomeron trajectory is equal to zero, we derive analytical formulae that sum both enhanced and semi-enhanced diagrams for elastic and diffractive amplitudes. Using parameters obtained from a fit to the available experimental data, we calculate the Survival Probability for central dijet production at energies accessible at the LHC. The results presented here which include the contribution of semi-enhanced and net diagrams, are considerably larger than our previous estimates.Comment: 11 pages, 10 pictures in .eps file

    Analysis of Limit Cycle Oscillation Data from the Aeroelastic Test of the SUGAR Truss-Braced Wing Model

    Get PDF
    Research focus in recent years has been given to the design of aircraft that provide significant reductions in emissions, noise and fuel usage. Increases in fuel efficiency have also generally been attended by overall increased wing flexibility. The truss-braced wing (TBW) configuration has been forwarded as one that increases fuel efficiency. The Boeing company recently tested the Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) wind-tunnel model in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). This test resulted in a wealth of accelerometer data. Other publications have presented details of the construction of that model, the test itself, and a few of the results of the test. This paper aims to provide a much more detailed look at what the accelerometer data says about the onset of aeroelastic instability, usually known as flutter onset. Every flight vehicle has a location in the flight envelope of flutter onset, and the TBW vehicle is not different. For the TBW model test, the flutter onset generally occurred at the conditions that the Boeing company analysis said it should. What was not known until the test is that, over a large area of the Mach number dynamic pressure map, the model displayed wing/engine nacelle aeroelastic limit cycle oscillation (LCO). This paper dissects that LCO data in order to provide additional insights into the aeroelastic behavior of the model

    Velocity-selective direct frequency-comb spectroscopy of atomic vapors

    Get PDF
    We present an experimental and theoretical investigation of two-photon direct frequency-comb spectroscopy performed through velocity-selective excitation. In particular, we explore the effect of repetition rate on the 5S1/25D3/2,5/2\textrm{5S}_{1/2}\rightarrow \textrm{5D}_{3/2, 5/2} two-photon transitions excited in a rubidium atomic vapor cell. The transitions occur via step-wise excitation through the 5P1/2,3/2\textrm{5P}_{1/2, 3/2} states by use of the direct output of an optical frequency comb. Experiments were performed with two different frequency combs, one with a repetition rate of 925\approx 925 MHz and one with a repetition rate of 250\approx 250 MHz. The experimental spectra are compared to each other and to a theoretical model.Comment: 10 pages, 7 figure

    An Aeroelastic Analysis of a Thin Flexible Membrane

    Get PDF
    Studies have shown that significant vehicle mass and cost savings are possible with the use of ballutes for aero-capture. Through NASA's In-Space Propulsion program, a preliminary examination of ballute sensitivity to geometry and Reynolds number was conducted, and a single-pass coupling between an aero code and a finite element solver was used to assess the static aeroelastic effects. There remain, however, a variety of open questions regarding the dynamic aeroelastic stability of membrane structures for aero-capture, with the primary challenge being the prediction of the membrane flutter onset. The purpose of this paper is to describe and begin addressing these issues. The paper includes a review of the literature associated with the structural analysis of membranes and membrane utter. Flow/structure analysis coupling and hypersonic flow solver options are also discussed. An approach is proposed for tackling this problem that starts with a relatively simple geometry and develops and evaluates analysis methods and procedures. This preliminary study considers a computationally manageable 2-dimensional problem. The membrane structural models used in the paper include a nonlinear finite-difference model for static and dynamic analysis and a NASTRAN finite element membrane model for nonlinear static and linear normal modes analysis. Both structural models are coupled with a structured compressible flow solver for static aeroelastic analysis. For dynamic aeroelastic analyses, the NASTRAN normal modes are used in the structured compressible flow solver and 3rd order piston theories were used with the finite difference membrane model to simulate utter onset. Results from the various static and dynamic aeroelastic analyses are compared

    A global analysis of inclusive diffractive cross sections at HERA

    Get PDF
    We describe the most recent data on the diffractive structure functions from the H1 and ZEUS Collaborations at HERA using four models. First, a Pomeron Structure Function (PSF) model, in which the Pomeron is considered as an object with parton distribution functions. Then, the Bartels Ellis Kowalski Wusthoff (BEKW) approach is discussed, assuming the simplest perturbative description of the Pomeron using a two-gluon ladder. A third approach, the Bialas Peschanski (BP) model, based on the dipole formalism is then described. Finally, we discuss the Golec-Biernat-W\"usthoff (GBW) saturation model which takes into account saturation effects. The best description of all avaible measurements can be achieved with either the PSF based model or the BEKW approach. In particular, the BEKW prediction allows to include the highest β\beta measurements, which are dominated by higher twists effects and provide an efficient and compact parametrisation of the diffractive cross section. The two other models also give a good description of cross section measurements at small xx with a small number of parameters. The comparison of all predictions allows us to identify interesting differences in the behaviour of the effective pomeron intercept and in the shape of the longitudinal component of the diffractive structure functions. In this last part, we present some features that can be discriminated by new experimental measurements, completing the HERA program.Comment: 32 pages, 18 figure

    Fluctuations, Saturation, and Diffractive Excitation in High Energy Collisions

    Full text link
    Diffractive excitation is usually described by the Good--Walker formalism for low masses, and by the triple-Regge formalism for high masses. In the Good--Walker formalism the cross section is determined by the fluctuations in the interaction. In this paper we show that by taking the fluctuations in the BFKL ladder into account, it is possible to describe both low and high mass excitation by the Good--Walker mechanism. In high energy pppp collisions the fluctuations are strongly suppressed by saturation, which implies that pomeron exchange does not factorise between DIS and pppp collisions. The Dipole Cascade Model reproduces the expected triple-Regge form for the bare pomeron, and the triple-pomeron coupling is estimated.Comment: 20 pages, 12 figure
    corecore