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Studies have shown that significant vehicle mass and cost savings are possible with
the use of ballutes for aero-capture. Through NASA’s In-Space Propulsion program, a
preliminary examination of ballute sensitivity to geometry and Reynolds number was
conducted, and a single-pass coupling between an aero code and a finite element solver
was used to assess the static aeroelastic effects. There remain, however, a variety of
open questions regarding the dynamic aeroelastic stability of membrane structures for
aero-capture, with the primary challenge being the prediction of the membrane flut-
ter onset. The purpose of this paper is to describe and begin addressing these issues.
The paper includes a review of the literature associated with the structural analysis of
membranes and membrane flutter. Flow/structure analysis coupling and hypersonic flow
solver options are also discussed. An approach is proposed for tackling this problem
that starts with a relatively simple geometry and develops and evaluates analysis meth-
ods and procedures. This preliminary study considers a computationally manageable
2-dimensional problem. The membrane structural models used in the paper include a
nonlinear finite-difference model for static and dynamic analysis and a NASTRAN finite
element membrane model for nonlinear static and linear normal modes analysis. Both
structural models are coupled with a structured compressible flow solver for static aeroe-
lastic analysis. For dynamic aeroelastic analyses, the NASTRAN normal modes are used
in the structured compressible flow solver and 3rd order piston theories were used with
the finite difference membrane model to simulate flutter onset. Results from the various
static and dynamic aeroelastic analyses are compared.

Introduction

NASA’s new space exploration initiative has set a
new course to develop human and robotic tech-

nologies that can deliver payloads larger than Apollo
to the Moon, to Mars, and bring astronauts and sam-
ples safely back to Earth at costs much lower than
Apollo. These challenges require creative aerospace
systems. One proposed technology for safely deliver-
ing payloads to the surface of Mars and return samples
to Earth involves flexible, deployable, perhaps inflat-
able decelerators like ballutes.

Studies have shown that significant vehicle mass
and cost savings are possible with the use of ballutes
for aerocapture.1 These deployable decelerators can
be grouped into two general categories: trailing and
clamped. The trailing ballute is characterized by an
inflatable structure (typically a torus or sphere) con-
nected to the payload aeroshell by tension lines. One
such concept is shown in figure 1. For the clamped
ballute, fabric fills the space between payload aeroshell
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Fig. 1 Trailing ballute.

and the inflatable structure (torus). A concept for a
clamped ballute is shown in figure 2.

Through NASA’s In-Space Propulsion (ISP) pro-
gram,2 a preliminary examination of ballute sensitivity
to geometry and Reynolds number and the influence of
large displacements on aeroheating and dynamic pres-
sures was conducted. Computational Fluid Dynamic
(CFD) studies have investigated the interaction of the
spacecraft wake and aeroheating and their sensitivities
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Fig. 2 Attached or clamped ballute.

to geometric and Reynolds number variations.3 These
studies have revealed that various types of favorable
and unfavorable shock interactions exist for the dif-
ferent ballute concepts.4 In addition, a single-pass
coupling between an aero code and a finite element
solver was used in reference 4 to assess static aeroe-
lastic effects. It was found that the deformed shape
allows for a circulation pattern within the flexible
trough between the nose and the trailing edge. This
deformation resulted in local increases and decreases
in temperature and pressure along the aeroshell outer
wall. Unsteady flow regions were also noted in some of
the analyses. Aeroelastic stability was not considered.

A series of high speed wind-tunnel tests were also
performed as part of the ISP program.5 Several
wind-tunnel models were built out of plastic support
structure and polyimide membranes to represent an
attached ballute concept. Several membrane thick-
nesses and cone angles were tested up to Mach 10 and
Reynolds number just over 525,000/foot. Some of the
models exhibited significant unsteadiness and in some
cases, flutter resulting in dynamic failure of the mem-
brane. These results underscore the need to predict
the static and dynamic aeroelastic response of these
membrane structures.

Linear aeroelastic analysis methods are well under-
stood and have long been applied to the aeroelastic
analyses of relatively stiff lifting surfaces. Virtually
all current aircraft, as well as, spacecraft such as the
space shuttle have used these methods. Here, both
the structure and flow field are analyzed using linear
theories. The next level of improvement in fidelity
of these methods is the use of nonlinear flow solvers,
and a wide variety of CFD codes are available for the
subsonic, supersonic, and hypersonic flight regimes.
The use of a linear structural theory with a nonlin-
ear CFD flow solver is adequate provided the structure
is still relatively stiff and behaves linearly to the ap-
plied aeroloads. For ballutes and other membrane
structures, aeroelastic analysis methods applicable to
linear structures are not adequate. Nonlinear struc-
tural analysis methods are required.

The development of aeroelastic analysis methods for

ballutes will involve several technical challenges: 1)
modeling the complex nonlinear behavior of a mem-
brane; 2) coupling a highly flexible structure to CFD
codes; 3) the use of hypersonic flow solvers that have
not previously been used for aeroelastic analysis; 4)
validation of the structural modeling and the aeroe-
lastic analysis method. Because of these challenges
there have been very few aeroelastic analyses examin-
ing membrane structures.

There are many open questions regarding the dy-
namic aeroelastic analysis of ballutes and membrane
structures. These questions include determining if a
nonlinear structural analysis close-coupled to a suit-
able flow solver is required or whether a linear normal
modes structural model similarly coupled is adequate
to assess dynamic stability? What are the implications
of static pressure difference and tension on membrane
stability? How should the membrane be modeled if it
is to be coupled with a flow solver? What are the time
accuracy requirements of the hypersonic flow solver?
Is the problem quasisteady/quasistatic with respect to
the flow? The purpose of this paper is to begin the
work of answering these questions. This preliminary
study will consider a computationally manageable 2-
dimensional problem. The following will be discussed:

• Review of the literature associated with the struc-
tural analysis of membranes, membrane flutter,
and hypersonic flow solver options.

• A proposed approach to tackling this problem
that starts with a relatively simple geometry.

• A membrane finite difference model and discus-
sion of model performance and convergence.

• Static analysis and comparison with a NASTRAN
nonlinear solution.

• Static aeroelastic analyses.

• Preliminary dynamic aeroelastic analyses.

• Concluding remarks that include a discussion of
accomplishments and deficiencies in this study as
well as next steps.

Membrane Literature Review
This section of the paper will provide a review of

the literature associated with the structural analysis
of membranes, membrane flutter, and hypersonic flow
solver options

Membrane Structural Analysis

The purpose of this section of the paper is to review
the various ways in which membranes have been an-
alyzed for various types of engineering problems. It
is by no means a complete survey of the membrane
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structural analysis. References 6 and 7 provide a more
detailed survey of nonlinear membrane analysis.

In the engineering field, the term membrane is re-
served for zero bending rigidity structures. As with
most areas of engineering the mechanics of membranes
encompasses the use of both linear and nonlinear mod-
els. The applicability of the linearity assumption is
very problem dependent. One such linear problem
is the analysis of a stretched string or cable. This
problem is essentially the same as the 2-dimensional
membrane problem. The linearizing assumptions are
that the out-of-plane displacements are small and the
tension in the string remains close to its equilibrium
value.8 These assumptions result in a linear, constant-
coefficient partial differential equation that has been
used directly in some of the earlier membrane flut-
ter analyses. Unfortunately, the small deflection and
constant tension assumptions are not likely to be ap-
plicable to the membrane flutter problem of a ballute.

Civil engineering has produced some work in the
area of membrane analysis. One such problem is the
analysis of guy cables. The study in reference 9 utilized
a time-domain finite element approach to study large
amplitude cable vibrations due to turbulent winds.
Reference 10 considered the stability of a cable in in-
compressible flow where the bulk of the stability anal-
ysis was performed assuming constant tension. Other
civil engineering membrane applications include mem-
brane roofs and inflatable or pneumatic structures.11

While clearly nonlinear, such problems are primarily
static in nature considering a constant velocity wind.
Transient response to wind loads has also been consid-
ered but aeroelastic stability has not.

The aerodynamic analysis of sails is also relevant to
the study at hand, and there exist several papers on
aerodynamic sail theory.12–15 Typically these studies
consider the sail to be an inextensible membrane for
which a static shape and associated lift coefficient is
sought. There have been some unsteady analyses, but
aeroelastic stability had not been considered.

Somewhat similar to the analysis of sails is the study
of membrane wings for micro air vehicles. Shyy et al
have provided a number of papers on this topic.16–23

This work has focused on several key areas includ-
ing the computation of aerodynamic coefficients, wing
shape optimization, and aeroelastic response to tur-
bulence and wind gusts. A key outcome of this work
has been the development of approaches for coupled
membrane-fluid dynamics analysis.

Another area where membranes have received con-
siderable study has been the analysis of gossamer
structures like space sails and scientific balloons.24–33

Some studies of gossamer structures have used com-
mercial codes like NASTRAN and ABAQUS. One
finding of these studies is that this class of mem-

brane problems, where the membrane is initially un-
derrestrained, can be very difficult to analyze using
finite element methods. Reference 7 has an excellent
discussion on the difficulties of analyzing membrane
structures that undergo large displacements during
loading. This type of structural system is undercon-
strained and stable equilibrium conditions only exist
for loading fields that are orthogonal to the set of un-
strained degrees of freedom. A common theme in the
literature is that achieving a converged static nonlin-
ear solution can be a challenge.

One of the real challenges of analyzing a membrane
structure is that it tends to wrinkle as it can’t sus-
tain a compressive load. Considerable effort in recent
years has been applied to enhance membrane model-
ing capabilities including membrane wrinkling, creases
due to folds, and a variety of edge constraints, as
well as nonlinear thermal effects. Methods of analy-
sis and models that incorporate these effects are being
developed within NASATRAN, ABAQUS, and other
research codes.34

Obtaining a nonlinear static solution serves only as
the first step in obtaining a flutter solution. A pos-
sible next step could be to use the stiffness matrices
from a converged nonlinear static solution in a linear
normal modes analysis. The resulting normal modes
could be used within CFD codes in the usual man-
ner. Reference 31 describes one such procedure for
MSC/NASTRAN in which a nonlinear static solution
for an inflatable structure is obtained then a linear
normal modes analysis is performed. This approach
described in reference 31 will be used in this study.

Membrane Flutter Analysis

While there are many papers on panel flutter and
a variety of research efforts continues in this area,35,36

there are but a handful of papers that specifically ad-
dress membrane flutter. Some of these studies consider
the membrane flutter problem to be a limiting case of
a plate as bending rigidity approaches zero or inplane
tension approaches infinity. In discussing the effect
of in-plane stress on panel flutter speed, Blisplinghoff
and Ashley37 stated that for the limiting case of a
membrane, when in-plane force approaches infinity,
the flutter speed is infinite. Reference 38 presents a
study of supersonic membrane flutter by considering
the case of a two-dimensional plate in the presence of
chordwise tensile in-plane stresses as the plate bending
rigidity approaches zero. Reference 39 also considered
the limiting case of a thin plate in supersonic flow.
The analysis of reference 40 began with the membrane
equation of a two dimensional membrane with a con-
stant tension force and supersonic static aerodynamic
approximation. One of the results of these studies has
been the development of approximate flutter design

3 of 17

American Institute of Aeronautics and Astronautics Paper 2007-2316



criterion, but the applicability of these criteria to the
ballute problem is limited, to say the least, due to the
fact that these membranes were flat, linear, employed
linear/simplified aerodynamic theories, and neglected
static pressure difference across the membrane.

Hypersonic Flow Solver Options

Hypersonic panel flutter and hypersonic vehicle
aeroservoelastic stability have been addressed through
well established hypersonic aeroelastic analyses. The
aerodynamic theories for these analyses has typically
been classical or generalized linear and nonlinear pis-
ton theory, hypersonic small disturbance theory or the
perturbed Euler method.41,42 These methods require
the assumptions of a thin body and sharp leading
edge and can be reasonably applied to lifting sur-
faces or sharp nosed bodies of revolution. Ballutes are
bluff bodies and clearly violate these assumptions, thus
these types aerodynamic theories are only suitable for
preliminary examination of membrane flutter analysis
strategies where the flow is approximately parallel to
the membrane surface.

The ballute operating environment will span the
rarified to continuum flow regimes, however, the high-
est loading is expected to be within the continuum
flow regime. For dynamic aerothermoelastic analysis,
there are a number of codes that can be considered
for this effort. Two open source codes available from
NASA Langley are LaURA43 and FUN3D.44 These
codes have the appropriate aerothermodynamic mod-
els including equilibrium, non-equilibrium chemistry
and surface catalycity. LaURA is not currently time
accurate nor does it have a dynamic mesh capabil-
ity. FUN3D is time accurate and has a dynamic mesh
capability, and a modal capability has been recently
added.

Another open source code available from NASA
Langley is CFL3D.45–47 While this code lacks the
aerothermodynamic analysis capabilities cited above,
it is time accurate and has dynamic mesh and modal
capabilities. While chemistry models would need to
be added for accurate aerothermodynamic analysis,
CFL3D may be suitable for initial assessment of close
coupled membrane flutter analysis strategies.

Flow/Structure Coupling

The primary goal of this study is the prediction of
the membrane flutter onset. This will require that ap-
propriate aerodynamic theories or codes be coupled
with a suitable structural analysis tool. The com-
putational strategies can be grouped into essentially
two broad categories: 1) Loose coupling, and 2) Close
coupling. This section of the paper will provide a
brief discussion of these approaches. In general, the
same types of flow and structural solvers can be used

in both strategies. Typically, a loose coupled anal-
ysis is solved with the flow and structural parts of
the problem in disparate domains. If time accuracy
is preserved, close coupled analysis can also solve the
flow and structure in disparate domains, or alterna-
tively, the governing equations can be combined and
the problem solved simultaneously. The decision to
combine all parts of the analysis into a single code is
often based on convenience or, in the case of commer-
cial codes, the availability of the source code. The
primary difference between the two approaches is that
loose coupling is not time accurate while close coupling
is. This means that a loose coupled strategy is suit-
able for static aeroelastic calculations only, while close
coupling can be used for static or dynamic analyses.
Table 1 lists the similarities and differences between
the two strategies. For a more detailed discussion of
computational approaches see reference 48.

Table 1 Flow/Structure coupling strategies.

Feature Loose Coupled Close Coupled
Time Accurate No Yes

Flow/Struct- Disparate Disparate
Descretization Unified

Flow Solver Any Any

Struct Solver Linear Linear
Nonlinear Nonlinear

Code Separate* Separate
Combined Combined*

Flow/Struct- Interpolated* Interpolated
Interface Same Grid Same Grid

Aeroelasticity Static Static
Dynamic

*Typical

This paper will describe several modeling and anal-
ysis procedures. These include: 1) A finite difference
model coupled with CFD for static aeroelastic analy-
sis; 2) A finite difference model coupled with piston
theory for static and dynamic aeroelastic analysis; 3)
A NASTRAN finite element model coupled with CFD
for static aeroelastic analysis; and 4) A modal struc-
tural model coupled with CFD for dynamic aeroelastic
analysis. It will be helpful and descriptve to discuss
where each of these fits into the loose/close coupling
framework described above.

A finite difference structural model of a membrane
will be described. This structural model is nonlin-
ear and will be used with CFL3D in a loosely coupled
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manner for static aeroelastic calculations in which the
CFD surface grid and the structural grid are not co-
incident and interpolation is used to pass information
between the two domains. This nonlinear structural
model will also be used with piston theory in a close
coupled manner in which the structure is nonlinear
and solved simultaneously with the aerodynamics on
the same grid.

A finite element model (FEM) will also be described
in which two solution procedures will be used: nonlin-
ear static and linear normal modes. For the static
aeroelastic analysis, this FEM will be used with a
nonlinear static solution procedure and loosely cou-
pled with CFL3D for static aeroelastic calculations in
which the CFD surface grid and the structural grid
are not coincident and interpolation is used to pass
information between the two domains. Following the
nonlinear static solution, the FEM will be used with
a linear normal modes solution procedure to gener-
ate natural frequencies and mode shapes that will be
passed via interpolation to CFL3D. Here the flow and
modal structural model are solved in a close coupled
manner within the same code, but in disparate do-
mains. Here, the dynamic structural analysis is linear.

Approach
The dynamic aeroelastic analysis of a thin-film bal-

lute will be a complex task. To determine flutter onset,
a time marching close-coupled solution of the hyper-
sonic flow field and structural dynamics of a detailed
thin-film structural model may be required. The struc-
tural analysis will be nonlinear and may also need to
be capable of modeling wrinkles. It is hoped that a
modal approach may be adequate, but a fully coupled
analysis or experimental data will be needed to deter-
mine if and when the modal approach can be used.
This study will attempt to improve our understanding
of aeroelastic membrane analysis by studying the sim-
plest possible configuration. The following steps are
proposed:

• Develop Finite Difference (FD) membrane struc-
tural model including first order piston theory
aerodynamics. Evaluate stability and conver-
gence properties of scheme. An advantage of the
FD model is it may be relatively easy to add it
to an existing CFD code. It may also be useful
or necessary to develop a nonlinear time accurate
membrane finite element model as an alternative
approach, but this approach was not taken in the
present study.

• Statically validate FD structural model with non-
linear finite element analysis. This finite ele-
ment analyses should include commercial codes

like NASTRAN, as well as, research codes. NAS-
TRAN was used in the present study.

• Dynamically validate FD structural model with
appropriate finite element analysis and theoretical
solutions where available.

• Static aeroelastic analysis: Perform static aeroe-
lastic analyses where Mach number, altitude,
static pressure difference and pretension are var-
ied. Examine convergence properties of the FD
scheme.

• Static aeroelastic analysis: Perform static aeroe-
lastic analyses where Mach number, altitude,
static pressure difference and pretension are var-
ied. Examine convergence properties of the FD
scheme.

• Dynamic aeroelastic analysis: This should include
fully coupled flutter analysis compared with a
modal flutter analysis. The fully coupled anal-
ysis will initially be the FD model but could also
include a nonlinear time accurate finite element
analysis.

• Apply higher fidelity aerodynamic methods to
the 2-dimensional membrane problem. Initially,
the CFL3D code is used as it has all the nec-
essary features for the aforementioned compari-
son: time-accuracy, aeroelastic grid deformation
scheme, and a modal capability. Later this could
include an appropriate hypersonic code.

• Examine a 3-dimensional, nominal flat membrane
using piston theory.

• Examine a 3-dimensional, nominal flat membrane
using CFL3D and other hypersonic CFD codes.

• It is hoped that this building block approach could
eventually lead to the development of an anal-
ysis capability and suitable experience base for
the analysis and design of a 3-dimensional ballute
structure.

Finite Difference Membrane Model
The problem considered in this study will be that

of a 2-dimensional membrane in the presence of super-
sonic flow. The problem is shown in figure 3 and looks
similar to the classical panel flutter problem. The
membrane properties to be considered in this study
are listed below,

E 800, 000 psi
L 10 in
h 0.001 in
ρm 0.0015945 slug/in3
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Fig. 3 Two dimensional membrane.
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Fig. 4 Membrane model and membrane segment
forces.

Structural Equations of Motion

The linear equation for a 2-d membrane is

ρmh
∂2w

∂t2
− T

∂2w

∂x2
+ ∆p = 0 (1)

Here, deformation in the x-direction is ignored and the
y-direction or out-of-plane deformation (w) is assumed
sufficiently small that the tension (T ) is approximately
constant. The natural frequencies of this system are
obtained by separation of variables with the pressure
difference across the membrane set to zero (∆p = 0)
where n = 1, 2, 3, ...

fn =
n
√

T
ρmh

2L
(2)

This result will be used for some comparisons between
the FD scheme and linear theory later in the paper.

For the case of nonlinear equations of motion for
the membrane, we consider the balance of forces of
the membrane segment shown in figure 4. Here, in the
x-direction we obtain the following,

−TL cos θL + TR cos θR −∆p ds sin θi+
τ ds cos θi = ρm h ds ẍ (3)

and for the y-direction,

−TL sin θL + TR sin θR + ∆p ds cos θi+
τ ds sin θi = ρm h ds ÿ (4)

where,

cos θL =
xi − xi−1√

(xi − xi−1)2 + (yi − yi−1)2
(5)

cos θR =
xi+1 − xi√

(xi+1 − xi)2 + (yi+1 − yi)2
(6)

sin θL =
yi − yi−1√

(xi − xi−1)2 + (yi − yi−1)2
(7)

sin θR =
yi+1 − yi√

(xi+1 − xi)2 + (yi+1 − yi)2
(8)

ds =
1
2

√
(xi+1 − xi−1)2 + (yi+1 − yi−1)2 (9)

cos (θi) =
1
2 (xi+1 − xi−1)

ds
(10)

sin (θi) =
1
2 (yi+1 − yi−1)

ds
(11)

To simplify expressions that will appear later in this
paper we define the membrane length on the left and
right of the ith point as,

`Li =
√

(xi − xi−1)2 + (yi − yi−1)2 (12)

`Ri =
√

(xi+1 − xi)2 + (yi+1 − yi)2 (13)

If the membrane material is linear elastic, the left
and right tension terms for the ith membrane segment
can be approximated as,

TLi =

Eh

√
(xi − xi−1)2 + (yi − yi−1)2 −∆xo(1− α ∆ T )

∆xo
(14)

TRi =

Eh

√
(xi+1 − xi)2 + (yi+1 − yi)2 −∆xo(1− α ∆ T )

∆xo
(15)
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where ∆xo is the undeformed or initial length of the
ith membrane segment. The term α ∆T represents
the thermal expansion coefficient and the temperature
change that, for this implementation, are selected ar-
bitrarily to obtain a desired value of pretension in the
membrane. Only positive values of tension are permit-
ted, so negative values are set to zero, and the ability
of this modeling approach to capture wrinkling is an
open question.

The nonlinear model to be developed in this sec-
tion of the paper will be based on finite difference
expressions. Finite difference representations for the
acceleration of the ith point in the x and y directions
are

ẍi =
xn+1
i − 2xni + xn−1

i

(∆t)2
(16)

and,

ÿi =
yn+1
i − 2yni + yn−1

i

(∆t)2
(17)

where ∆t is the time step. Using these and the expres-
sions developed previously, an implicit finite difference
expression can be developed. Equations 3 and 4 can
be rewritten as shown in equations 18 and 19 (see bot-
tom of next page) where,

ν =
(∆t)2

ρm h ∆x
(20)

The parameter ν has the appearance of a Courant
number used in the Courant-Friedrichs-Lewy (CFL)
condition that defines scheme stability limits on time
step and spatial mesh spacing. Equations 18 and 19
form tridiagonal matrices that can be solved using
Thomas’s algorithm.

Finite Element Membrane Model
As mentioned earlier, one of the objectives of this

study is to assess the applicability of using a modal
approach for membrane and ultimately thin film bal-
lute flutter analysis. While research codes may have
the latest algorithms and other unique capabilities,
they often lack the library of elements and features
necessary to model complex structures. As such, NAS-
TRAN will be utilized here as it has the capability to
perform nonlinear static solutions and then perform a
modal restart to obtain linear mode shapes and fre-
quencies for conventional flutter analysis.

The membrane finite element model is shown in fig-
ure 5. It is modeled using CQUAD4 elements with
suitable boundary conditions and properties to achieve
2-dimensional behavior. The membrane material is
modelled as orthotropic with the Poisson ratio and the
z-direction thermal expansion coefficient set to zero.

X

Y

Z

X

Y

Z

Fig. 5 NASTRAN membrane model.

X

Y

Z

1.13+00

0.

1.13+00

1.06+00

9.81-01

9.05-01

8.30-01

7.55-01

6.79-01

6.04-01

5.28-01

4.53-01

3.77-01

3.02-01

2.26-01

1.51-01

7.55-02

 0.
  default_Fringe :
Max 1.13+00 @Nd 57
Min  0. @Nd 1
  default_Deformation :
Max 1.13+00 @Nd 57

MSC.Patran 2003 r2a 20-Dec-05 18:46:10

Fringe:SC2:DELTAP0.1, A1:Non-linear: 200. % of Load: Displacements, Translational-(NON-LAYERED) (MAG)

Deform:SC2:DELTAP0.1, A1:Non-linear: 200. % of Load: Displacements, Translational

X

Y

Z

Fig. 6 NASTRAN nonlinear static solution,
∆Po = 2.5 psi and Pretension = 2 lbf/in.

The NASTRAN nonlinear static solution (SOL 106)
essentially performs a series of analyses where the load
is incrementally increased to the desired level. It was
found here that since the membrane is initially flat and
very thin a very small load increment is required at
the start of the analysis or the solution will fail. Once
there is some deformation in the membrane due to the
static pressure load, the membrane stiffness increases
and a larger load increment can be applied. As with
the finite difference model, the pretension is included
in the analysis via an arbitrary value of thermal ex-
pansion coefficient and temperature change. Figure 6
shows an example of a converged NASTRAN SOL 106
(nonlinear static) solution.

Preliminary Static and Dynamic
Membrane Analyses

The purpose of this section of the paper is to present
the results of the authors attempts to learn how to use
the finite difference membrane model described earlier.
This is done prior to the introduction of aerodynamic
forces. Stability, convergence, and dynamic behavior
of the finite difference membrane model are consid-
ered. Finite difference analyses are compared with
linear theory or finite element analyses for the purpose
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of validation.
The analyses of the membrane comprises two

phases: obtaining a converged static solution followed
by a dynamic analysis. The solution procedure for
both phases is largely the same; a time-marching anal-
ysis is conducted until convergence is obtained or in
the case of the dynamic analysis, until stability can be
assessed. In either case, scheme stability is a concern
and the ν parameter identified earlier in equation 20
is similar to the Courant number commonly encoun-
tered in numerical schemes. A similar parameter was
identified in reference 18 where a similar but less gen-
eral modeling approach was taken. Typically, there
are upper limits on the value of ν for scheme stability.

For the values of h and ρm considered here, ∆x was
held constant at 0.5 in, and ∆t was varied to iden-
tify an upper limit for scheme stability. A value of
10−6 was ultimately found to be approximately the
upper limit for stability. Inclusion of sub-iterations
in future versions of this finite difference model may
allow for larger time steps. For the flat membrane,
the static converged solution is not necessary, but an
initial displacement perturbation is required. For this
and subsequent analyses, the initial deflection for the
dynamic finite difference analyses is

yinitial = ystatic + 0.001 [sin(xπ/L)
+sin(2xπ/L) + sin(3xπ/L)] (21)

where ystatic is the converged static solution. For the
special case of ∆P = 0, the membrane is flat and
ystatic is zero.

Figure 7 shows the time history traces of all the
membrane segment centers for the case of a flat mem-
brane (∆P = 0). Here, we can see that the solution
is stable but has little damping. Spectral analysis of
these time traces was performed to identify natural fre-
quencies. These frequencies are listed in table 2 where
they are compared with the theoretical linear frequen-
cies (equation 2). While not identical, the frequencies
are consistent and indicate that no obvious implemen-
tation errors are present in the finite difference model.

The lack of significant damping previously identified
is good in the sense that the numerical scheme appears

2

1

0

-1

-2

1.0

0.5

0

-0.5

-1.0

x 10−3

x 10−6

y, in
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Fig. 7 Time histories of membrane segment cen-
ters for a flat membrane, ∆x = 0.05 in, ∆P =
0.0 psi, and Pretension = 10 lbf/in.

Table 2 Comparison of modal frequencies (Hz.)
for a flat membrane. ∆P = 0 psi and
Pretension = 10 lbf/in.

Mode Linear Theory Finite Difference
1 475 430
2 950 859
3 1,425 1,289

to not be adding any, but the lack of damping is un-
desirable in terms of obtaining a statically converged
solution. An additional concern in getting a converged
static solution is the small size of the time step that
must be used. Fortunately, for static solutions there
are a couple of obvious ways that convergence can be
improved. One way is to add some type of real or
artificial damping to minimize dynamic oscillations.
Using first-order-accurate estimates of the membrane
segment center velocities in the x and y directions, the
following terms are added to the right hand side of
equations 18 and 19 to add damping,

0.035ν
xni − xn−1

i

∆t
(22)

xn+1
i+1 ν

(
TnRi
`nRi

+
τ

2

)
+ xn+1

i

(
ν

(
−
TnLi
`nLi

−
TnRi
`nRi

)
− 1
)

+ xn+1
i−1 ν

(
TnLi
`nLi

− τ

2

)
= −2xni + xn−1

i + ν∆p
1
2

(yi+1 − yi−1)

(18)

yn+1
i+1 ν

(
TnRi
`nRi

+
τ

2

)
+ yn+1

i

(
ν

(
−
TnLi
`nLi

−
TnRi
`nRi

)
− 1
)

+ yn+1
i−1 ν

(
TnLi
`nLi

− τ

2

)
= −2yni + yn−1

i − ν∆p
1
2

(xi+1 − xi−1)

(19)
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Fig. 8 Converged membrane solution and time his-
tories of membrane segment centers obtained with
artificial structural damping and material density,
∆x = 0.05in, ∆P = 1.0 psi, and Pretension =
2.5 lbf/in.

0.035ν
yni − yin−1

∆t
(23)

The other way to increase convergence is to artificially
increase the value of the material density so that a
larger time step can be used for a given value of ν.
This is a viable option as ρm does not influence the
static solution, so the density can be increased by sev-
eral orders of magnitude allowing the time step size
to be similarly increased. With these modifications, a
converged static solution is easily obtained as shown
by the membrane segment center time traces in fig-
ure 8. For subsequent dynamic analysis, the damping
terms must be eliminated and nominal value of den-
sity must be used. These methods of improving static
convergence will be used throughout the remainder of
this paper.

To further validate the finite difference model, con-
verged static analyses can be compared with converged
NASTRAN SOL 106, nonlinear static solutions. For
the finite difference and NASTRAN analyses, the fi-
nal converged solutions for the case of ∆P = 1.0 psi
and Pretension = 5 lbf/in are shown in figure 9. The
NASTRAN and the finite difference solutions are all in
excellent agreement, further indicating that the finite
difference membrane model is valid.

The final comparison to be made in this section of
the paper will be between the natural frequencies of
the finite difference scheme with those obtained us-
ing NASTRAN. In the case of the NASTRAN, the
appropriate frequencies are obtained by performing a
SOL 103, normal modes analysis, using the stiffness
matrix from the appropriate converged SOL 106, non-
linear static solution. The finite difference frequencies
are calculated by first obtaining a converged static
solution, followed by a dynamic analysis using the

0 1 2 3 4 5 6 7 8 9 10

1.4

1.2

1.0

0.8

0.6

0.4

0.2

y, in

x, in

Finite Difference Scheme

NASTRAN Nonlinear Static

Fig. 9 Comparison of finite difference and NAS-
TRAN SOL 106 membrane displacement, ∆P =
2.5 psi and Pretension = 5 lbf/in.

methods described above. Then, spectral analysis of
the time traces is used to identify modal frequencies.
The first three frequencies using each analysis method
are shown in table 3. The excellent comparison further
validates the finite difference scheme.

Table 3 Comparison of modal frequencies (Hz.),
∆P = 1.0 psi and Pretension = 10 lbf/in.

Mode NASTRAN Finite Difference
1 825 820
2 1,177 1,172
3 1,792 1,797

Aerodynamic Modeling
So far, ∆P has been considered a static quantity.

Here and throughout the remainder of the paper, ∆P
will be defined as the sum of an unsteady compo-
nent and a static component (∆Po). The unsteady
component of ∆P is a function of the structural dis-
placement of the membrane. Two methods will be
used to calculate the unsteady part of ∆P : piston the-
ory and CFD. Piston theory has the advantage that it
is simple and can be easily incorporated into the finite
difference scheme already described. When properly
applied, CFD analysis is more accurate than piston
theory, and codes like CFL3D can model structural
dynamics modally.

Piston theory is a simple inviscid unsteady aerody-
namic theory that has been used extensively in su-
personic and hypersonic aeroelasticity. It provides a
point-function relationship between the local pressure
on the surface and the local fluid velocity normal to
the surface. The derivation of piston theory utilizes
the isentropic expression for the pressure on the sur-
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face of a moving piston.

p(x, t)
p∞

=
(

1 +
γ − 1

2
vn
a∞

) 2γ
(γ−1)

(24)

where γ is the ratio of specific heats and a∞ is the free
stream sonic speed. The normal velocity is

vn =
∂w

∂t
+ V∞

∂w

∂x
(25)

where w is the out of plane displacement. The expres-
sion for piston theory is based on a binomial expansion
of equation 24. A third order expansion can be written
as follows49

p(x, t)− p∞ = p∞

[
γ

(
vn
a∞

)
+
γ(γ + 1)

4

(
vn
a∞

)2

+
γ(γ + 1)

12

(
vn
a∞

)3
]

(26)

For implementation into the finite difference scheme,
equation 25 will be rewritten,

(vn)i =
yni − yn−1

i

∆t
+ V∞

yni+1 − yni−1

xni+1 − xni+1

(27)

and with the addition of a static pressure difference,
the ∆P term in equations 3 and 4 is

∆p = (p(x, t)− p∞) + ∆po (28)

Equations 26, 27, and 28 can be easily included in the
finite difference model. Static and dynamic aeroelas-
tic analysis using piston theory will be presented in a
subsequent section of the paper.

The alternative approach for calculating ∆P is
to use CFD. The CFD code CFL3D version 6.4
(CLF3Dv6.4)45,46 will also be used in this study.
CFL3D solves the time-dependent conservation law
form of the Reynolds-averaged Navier-Stokes equa-
tions using a finite-volume approach. Upwind-biasing
is used for the convective and pressure terms while
central differencing is used for the shear stress and
heat transfer terms. Implicit time advancement is used
with the ability to solve steady or unsteady flows. In
this study, the Euler equations were solved. Using
MATLAB m-file scripts, CFL3D can be loosely cou-
pled with both the finite difference and the NASTRAN
membrane models for static aeroelastic analysis. For
dynamic aeroelastic analysis, CFL3D currently only
supports a modal representation of structures, and
MATLAB m-file scripts were again used to loosely con-
nect the two codes. These procedures will be discussed
in more detail in the sections that follow.

One final note about the aerodynamic model. In this
study, analyses will be performed at constant Mach

number with altitude being varied. An atmosphere
model, curve fit of a standard atmosphere,50 was used
to calculate the temperature and density associated
with a given altitude so that dynamic pressure and
free stream velocity could also be calculated. This
aerodynamic model was used throughout this study,
with both piston theory and CFD.

Membrane Static Aeroelasticity
This section of the paper will examine the static

aeroelastic behavior of 2-d membranes. First, a loose
CFD coupling procedure will be described followed by
a discussion of results.

Structural/CFD Coupling for Static Aeroelasticity

A procedure was implemented to loosely couple
CFL3D with both the NASTRAN or the finite dif-
ference membrane model. For this analysis two proce-
dures had to be developed. One was to pass the pres-
sure coefficient data from the CFD output to the input
of the structural analysis. The other requires that the
output of the structural analysis (nodal displacements)
be passed to the CFD code. These procedures were
performed using MATLAB scripts (m-files). The de-
tails of these two procedures will be described here.

To transfer pressures to the structural analysis in-
put, the pressure coefficients were read from a CFL3D
output file (cfl3d.prout). These coefficients were con-
verted to pressures using the dynamic pressure ap-
propriate for the Mach number and altitude being
examined, and the resulting pressures were then inter-
polated to the structural mesh using linear interpola-
tion. In the case of the finite difference analysis, these
fixed pressures were then used in the time-marching
membrane solution. For the NASTRAN analysis, a
script was used to generate a bulk data file (.bdf) con-
taining PLOAD2 cards. This pressure data file was
used in the NASTRAN SOL 106 analysis by way of an
include statement in the main input deck.

To transfer the structural displacements to the CFD
analysis, a script was used to interpolate the struc-
tural displacements to the CFD computational surface
grid points. In the case of the finite difference model,
the structural displacements are available within the
MATLAB environment, and in the case of the NAS-
TRAN solution, the displacements are read from the
.f06 output file. The structural displacements are then
interpolated to the CFD grid points and written to the
file newsurf.p3d. Within the CFL3D input file, the
keyword idef ss is set to unity which forces CFL3D to
read the newsurf.p3d file and deform the grid accord-
ingly.

While the static analysis is relatively straight for-
ward with the aforementioned procedures being re-
peated one after the other until convergence, there are
a couple of additional items of interest that should
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Fig. 10 NASTRAN nonlinear static aeroelastic so-
lution and finite difference aeroelastic solution us-
ing CFL3D and piston theory, M = 5.0, Altitude =
60, 000feet, ∆Po = 1.0 psi, and Pretension =
10 lbf/in.

be considered. One of these was the use of a relax-
ation factor that governs the portion of the structural
displacement from each iteration that is carried for-
ward. For the Mach number considered, no relaxation
was needed (relaxation was unity) for all the finite dif-
ference/CFD analyses and for the NASTRAN/CFD
analyses when the altitude was at or above 60,000 feet.
Below this altitude, the NASTRAN/CFD analyses re-
quired a very small value of relaxation (0.05) to achieve
convergence. Finally, it should be pointed out that the
CFD grids used here were relatively simple, so they
were all generated using a MATLAB script.

Static Aeroelastic Analyses

The first set of data to be examined will be a com-
parison of all the static aeroelastic analysis methods
described in this paper. This includes the finite differ-
ence membrane model with both 1st and 3rd order
piston theory and CFD. Results obtained from the
NASTRAN/CFD procedure will also be considered.
Figure 10 shows a comparison of the converged static
aeroelastic analyses of the various approaches at an
altitude of 60,000 feet. A significant observation is
the continued excellent agreement between the NAS-
TRAN SOL 106 and the finite difference analysis when
the same aerodynamic method is used. It is also
noted that piston theory provides results consistent
with CFL3D, and as expected, 3rd order piston the-
ory provides a result closer to the CFD analysis than
does 1st order piston theory. First order piston theory
will no longer be considered in this study.

Figure 11 shows the results of a series of finite dif-
ference/piston theory static aeroelastic analysis for
M = 5.0 where altitude is varied from 200,000 feet
to sea level. The highest altitude conditions repre-
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Fig. 11 Static aeroelastic solutions obtained us-
ing the finite difference membrane model and
3rd order piston theory aerodynamics, M = 5.0,
Pretension = 10 lbf/in, ∆Po = 1.0 psi, and
∆x = 0.05 in.
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Fig. 12 NASTRAN nonlinear static aeroelastic
solution with CFL3D Euler aerodynamics, M =
5.0, ∆Po = 1.0 psi, and Pretension = 10 lbf/in.

sent very low dynamic pressures and the solutions
are nearly symmetric and similar to those obtained
previously. As altitude is reduced, increasing the dy-
namic pressure, the converged deflections appear to
flatten out due to the increasing aerodynamic load. At
the lowest altitudes, the deflected membrane appears
wrinkled. The results from a similar series of NAS-
TRAN/CFD static analysis are shown in figure 12.
The trends are the same as those noted for the fi-
nite difference/piston theory analysis, but no apparent
wrinkling is noted at the lower altitudes.

Two CFD solutions and their respective grids are
shown in figures 13 and 14. Here, the membrane occu-
pies the lower surface between x = 0 and x = 10. The
grid extends upstream and downstream of the mem-
brane 8 grid points in each direction. The membrane
deformation built into these grids was obtained with
CFL3D coupled with NASTRAN, and they are the
same as the deformation shown in figure 10 at the
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200,000 and 60,000 feet altitudes. These contour plots
show the existence of a dissipated shock wave at the
leading edge of the membrane indicating the need for
a more refined grid.

Membrane Dynamic Aeroelasticity
This section of the paper will examine the dynamic

aeroelastic behavior of 2-d membranes. The dynamic
aeroelastic analysis begins where the static aeroelastic
analysis ends. As has already been described, for a
given Mach number and altitude, a converged static
aeroelastic solution is obtained. Then, a second nu-
merical simulation is performed with artificial damp-
ing terms removed and the static aeroelastic solution
perturbed slightly to assess stability. If the oscilla-
tions decay, then the solution is deemed stable, and
if they diverge, the solution is deemed unstable. In
the case of the finite difference membrane analysis,
3rd order piston theory will be used with the same
analysis procedure as has already been described. As
of this writing, a flutter analysis with CFL3D is only

performed modally although the capability exists to
directly couple a structural solver and CFL3D. Thus, a
CFL3D/NASTRAN modal flutter analysis procedure
will be described next, followed by some preliminary
flutter analyses.

Modal Flutter Analysis Procedure

The modal flutter analysis procedure has many steps
that can most easily be described in the following enu-
merated list.

1. Obtain a converged, nonlinear static aeroelastic
solution using the previously described loosely
coupled NASTRAN SOL 106 and CFL3D static
solution procedure.

2. Perform a NASTRAN SOL 103 analysis (normal
modes analysis), using the final stiffness matrix
from the preceding step.

3. Extract the frequencies and mode shapes from the
NASTRAN SOL 103 output file. Put modal fre-
quencies in CFL3D input file.

4. Create CFD grid with the membrane surface de-
formed into the converged static aeroelastic shape
from the final NASTRAN SOL 106 solution in
step 1.

5. Perform CFL3D analysis (irestart=0) with modal
deformation turned off (moddfl=-1).

6. Extract converged generalized forces from the
CFL3D output, put these values in the CFL3D
input file as input parameter gf0. Since the
static aeroelastic shape is built into the grid,
this step ensures that the pressure forces and in-
ternal stresses initially sum to zero so that no
static aeroelastic deformation is obtained within
CFL3D.

7. Restart CFL3D (irestart=1) with modal deforma-
tion turned off (moddfl=-1). After this run, net
generalized forces should be near zero. Without
this step, a transient in the generalized force will
be introduced.

8. Restart CFL3D (irestart=1) with modal deforma-
tion turned on (moddfl=0) and a large value of
modal damping (damp=0.99). This will remove
any generalized coordinate transient associated
with the net generalized force not being identi-
cally zero.

9. Restart CFL3D (irestart=1) with modal deforma-
tion turned on (moddfl=0) , modal damping set
to zero (damp=0.0), and a perturbation value for
the modal velocities (x0(2*n)=0.05). This step in
the procedure is where stability is determined.
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Figure 15 shows a set of generalized coordinate time
histories resulting from the application of this proce-
dure. The initial and three subsequent CFL3D restart
runs have been identified with their appropriate step
numbers. Note that only in the final run do the gen-
eralized coordinate values change. For this specific
analysis (altitude=200,000 feet) the dynamic pressure
is low and the generalized coordinate response is stable
and largely undamped.

It should be pointed out that in the typical usage
of CFL3D for flutter analysis, the normal modes and
their associated frequencies don’t change based on al-
titude or dynamic pressure. Here, the frequencies and
mode shapes can change as a function of altitude. The
first five modal frequencies are plotted versus altitude
in figure 16. The modal frequencies drop as a result
of decreasing altitude. To examine the behavior of
the mode shapes, figure 17 shows the scaled vertical
displacement of mode 1 plotted versus the static aeroe-
lastic location of the nodes in the x-direciton (initial
nodal x-value plus its static aeroelastic increment).
Here modal displacement is seen to be a relatively
weak function of altitude. Note that these modal
displacement are the displacements about the static
aeroelastic solution that has been previously shown to
be a stronger function of altitude.

Membrane Flutter Analyses

Applying the procedure just described at various
altitudes, it is possible to identify the flutter onset con-
dition. Figures 18 and 19 show the time histories of
the generalized coordinates for the altitudes of 80,000
and 60,000 feet, respectively. The generalized coordi-
nate time histories at 80,000 feet and above showed
stable, mild growth, or mild decay in amplitude. In
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Fig. 16 NASTRAN SOL 106/103 modal fre-
quencies as a function of altitude, M = 5.0,
Pretension = 10 lbf/in, ∆Po = 1.0 psi, and
∆x = 0.05 in.
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Fig. 17 NASTRAN SOL106/103 mode 1 dis-
placements from static solution, M = 5.0,
Pretension = 10 lbf/in, ∆Po = 1.0 psi, and
∆x = 0.05 in.

the case of figure 18, the amplitude of mode 3 is in-
creasing at a linear rate. For 60,000 feet, mode 3 grew
at a more exponential rate. Typically, in this type
of flutter analysis, at flutter onset several modes in-
crease in amplitude at a single frequency. Here, at
60,000 feet, modes 3 and 4 are increasing in amplitude
but their frequencies are not the same. It is probably
worth pointing out that there are some important dif-
ferences between a typical CFL3D flutter analysis and
the analyses in this paper. In most applications of
CFL3D to flutter analysis, the same mode shapes and
frequencies are used for all altitudes/conditions. Here,
in addition to the static aeroelastic solution chang-
ing significantly, the mode shapes and frequencies are
also changing with altitude. Additional study will be
required to understand the implications of these new
analysis features and the specific results obtained.

Simulations for assessing dynamic aeroelastic stabil-
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ity using the finite difference scheme coupled with 3rd
order piston theory were also performed at the various
altitudes. Figure 20 shows the vertical displacement
time history for the approximate center point of the
membrane (i=11) at the various altitudes. When the
altitude is 40,000 feet or greater the solution is stable.
For altitudes of 20,000 feet and below the solutions
are unstable. The proper interpretation of this result
is, however, unclear. Initially, the response grows in
a smooth manner. One might interpret this result as
flutter onset, but due to the nonlinearities, a limit cy-
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Fig. 20 Time history of vertical displacement of
membrane center point (yi=11) using finite differ-
ence structural model and 3rd order piston theory
aerodynamics, M = 5.0, Pretension = 10 lbf/in,
∆Po = 1.0 psi, and ∆x = 0.05 in.

cle oscillation (LCO) might be expected. Instead of
a ”stable” LCO, the solution blows up after a few
cycles. This problem may be associated with a lim-
itation in the ability of the finite difference scheme
to handle large geometric nonlinearities, and it should
also be noted that the static aeroelastic solutions as-
sociated with the conditions where the ”instabilities”
occurred showed some wrinkling-like behavior. If the
exact point of instability onset is identified (between
40,000 and 20,000 feet) a stable LCO may be obtained.

To summarize the flutter analyses performed so far,
hard flutter onset is between 80,000 and 60,000 feet
for the CFL3D modal flutter analysis and between
40,000 and 20,000 feet for the finite difference/piston
theory analysis. Also, at the intermediate altitudes
(40,000 to 100,000 feet) a large amount of aerodynamic
damping is introduced in the finite difference/piston
theory analyses, while little or no aerodynamic damp-
ing appears to be present for any of the CFL3D modal
analyses. Clearly, additional study will be required
to fully understand membrane flutter and these pre-
liminary results. It is also apparent that the viability
of modal based flutter analysis versus a fully nonlin-
ear structural simulation cannot yet be assessed, as the
analyses performed so far utilize different aerodynamic
methods.

Concluding Remarks
The aeroelastic analysis of a thin-film ballute is a

technical challenge. One of the challenges is the model-
ing of the ballute’s complex, 3-dimensional membrane
structure. A membrane with large deflections is non-
linear and it has the tendency to wrinkle, complicating
both the structural analysis as well as the associated
aerodynamic analysis. There are a number of possible
ways to model the membrane including finite differ-
ence, finite element, and modal representations. The
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modal representation must be linearized about a non-
linear static solution. Commercial finite element codes
exist that can model membrane structures, but de-
veloping a close-coupled aeroelastic analysis capability
will not be possible due to the proprietary nature of
these codes. Aeroelastic analysis schemes based on
close and loose coupling with appropriate flow solvers
will both need to be investigated to verify and validate
the various approaches.

This paper proposed a series of steps leading to the
development of a membrane flutter analysis capabil-
ity. A building block approach is proposed in which
increasing levels of complexity are added. Initially,
the simplest possible structural and aerodynamic mod-
els are considered. This approach should allow for a
thorough understanding of the physics and numerics
associated with each step.

This paper examined a relatively simple, 2-
dimensional membrane structure. A finite difference
representation of the membrane was developed that
captured membrane pretension and static pressure dif-
ference across the membrane. This model was then
used to obtain nonlinear static solutions with various
levels of pretension and static pressure difference. A
NASTRAN membrane model was developed and non-
linear static solutions were obtained and compared
with those from the finite difference model. These
static analyses were in excellent agreement. Addition-
ally, some dynamic validation studies were also pre-
sented. Here, frequencies from spectral analysis of the
finite difference time traces were compared with the
frequencies from linear theory and NASTRAN SOL
106/103. These studies further validated the finite dif-
ference membrane model.

Third order piston theory aerodynamics was in-
cluded in the membrane finite difference model, and
a series of static aeroelastic solutions was obtained
at various altitudes for fixed Mach number. At the
lower altitudes, some of these solutions appeared wrin-
kled. A procedure was developed to couple both the
NASTRAN nonlinear static solution and the finite dif-
ference scheme with CFL3D. Here, the NASTRAN
and finite difference solution were in excellent agree-
ment.

Using the converged static aeroelastic solutions as
a starting point, dynamic stability was investigated.
Here again, altitude was varied for a fixed Mach num-
ber with solution time histories being examined at
each condition. Two analyses types were considered:
1) The membrane finite difference scheme with pis-
ton theory aerodynamics, and 2) NASTRAN SOL 106
and SOL 103 mode shapes and frequencies in CFL3D.
At a fixed Mach number, both methods provided es-
timates of the flutter onset altitude. In contrast to
the static analyses, these flutter analyses were not in

good agreement. The flutter onset altitudes were dif-
ferent as were the damping characteristics of the time
traces as a function of altitude. Further study will be
required to fully understand the implications of these
preliminary results.

There is clearly much additional work to be done
to gain a good understanding of the aeroelastic char-
acteristics of thin membrane structure, and further
study and method development will need to be per-
formed to better understand the dynamic aeroelastic
behavior of thin membranes. This work includes CFD
and structural grid convergence studies. Paramet-
ric studies where the effects of membrane geometry,
static pressure difference, and pretension are consid-
ered. The finite difference equations need to be in-
corporated into CFL3D to make a proper comparison
between structural modeling approaches, and the use
of Navier Stokes equations in the flow solver should
also be considered. Ultimately, a hypersonic CFD flow
solver will need to be used.
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