125 research outputs found
Critical State in Thin Anisotropic Superconductors of Arbitrary Shape
A thin flat superconductor of arbitrary shape and with arbitrary in-plane and
out-of-plane anisotropy of flux-line pinning is considered, in an external
magnetic field normal to its plane.
It is shown that the general three-dimensional critical state problem for
this superconductor reduces to the two-dimensional problem of an infinitely
thin sample of the same shape but with a modified induction dependence of the
critical sheet current. The methods of solving the latter problem are well
known. This finding thus enables one to study the critical states in realistic
samples of high-Tc superconductors with various types of anisotropic flux-line
pinning. As examples, we investigate the critical states of long strips and
rectangular platelets of high-Tc superconductors with pinning either by the
ab-planes or by extended defects aligned with the c-axis.Comment: 13 pages including 13 figure files in the tex
Transcriptomic Characterization of a Synergistic Genetic Interaction during Carpel Margin Meristem Development in Arabidopsis thaliana
In flowering plants the gynoecium is the female reproductive structure. In Arabidopsis thaliana ovules initiate within the developing gynoecium from meristematic tissue located along the margins of the floral carpels. When fertilized the ovules will develop into seeds. SEUSS (SEU) and AINTEGUMENTA (ANT) encode transcriptional regulators that are critical for the proper formation of ovules from the carpel margin meristem (CMM). The synergistic loss of ovule initiation observed in the seu ant double mutant suggests that SEU and ANT share overlapping functions during CMM development. However the molecular mechanism underlying this synergistic interaction is unknown. Using the ATH1 transcriptomics platform we identified transcripts that were differentially expressed in seu ant double mutant relative to wild type and single mutant gynoecia. In particular we sought to identify transcripts whose expression was dependent on the coordinated activities of the SEU and ANT gene products. Our analysis identifies a diverse set of transcripts that display altered expression in the seu ant double mutant tissues. The analysis of overrepresented Gene Ontology classifications suggests a preponderance of transcriptional regulators including multiple members of the REPRODUCTIVE MERISTEMS (REM) and GROWTH-REGULATING FACTOR (GRF) families are mis-regulated in the seu ant gynoecia. Our in situ hybridization analyses indicate that many of these genes are preferentially expressed within the developing CMM. This study is the first step toward a detailed description of the transcriptional regulatory hierarchies that control the development of the CMM and ovule initiation. Understanding the regulatory hierarchy controlled by SEU and ANT will clarify the molecular mechanism of the functional redundancy of these two genes and illuminate the developmental and molecular events required for CMM development and ovule initiation
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers âŒ99% of the euchromatic genome and is accurate to an error rate of âŒ1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Influence of Candidate Genes on Attention Problems in Children: A Longitudinal Study
Attention problems form one of the core characteristics of Attention-Deficit Hyperactive Disorder (ADHD), a multifactorial neurodevelopmental disorder. From twin research it is clear that genes play a considerable role in the etiology and in the stability of ADHD in childhood. Association studies have focused on genes involved in the dopaminergic and serotoninergic systems, but with inconclusive results. This study investigated the effect of 26 Single Nucleotide Polymorphisms (SNPs) in genes encoding for serotonin receptors 2A (HTR2A), Catechol-O-Methyltransferase (COMT), Tryptophane Hydroxylase type 2 (TPH2), and Brain Derived Neurotrophic Factor (BDNF). Attention problems (AP) were assessed by parental report at ages 3, 7, 10, and 12 years in more than 16,000 twin pairs. There were 1148 genotyped children with AP data. We developed a longitudinal framework to test the genetic association effect. Based on all phenotypic data, a longitudinal model was formulated with one latent factor loading on all AP measures over time. The broad heritability for the AP latent factor was 82%, and the latent factor explained around 55% of the total phenotypic variance. The association of SNPs with AP was then modeled at the level of this factor. None of the SNPs showed a significant association with AP. The lowest p-value was found for the rs6265 SNP in the BDNF gene (p = 0.035). Overall, our results suggest no evidence for a role of these genes in childhood AP
Why do women use dietary supplements? The use of the theory of planned behaviour to explore beliefs about their use
Dietary supplements use is increasing, despite the lack of evidence to suggest they are needed to meet dietary deficiency in the majority of people. Reasons for consuming dietary supplements are likely to be complex, combining social, psychological, knowledge and economic factors. The Theory of Planned Behaviour (TPB) is a widely used model of social cognition, which has recently been applied to the nutrition field. It was used in a questionnaire, along with a number of additional measures, to explore dietary supplement use in a cohort of women. Data from 303 questionnaires were included in the analysis. The results showed that intentions were the major predictor of dietary supplement use. Health value and susceptibility to illness were also significant predictors of dietary supplement use (total of 82.9% of respondents correctly classified as users or non-users). Intentions themselves were most strongly predicted by attitude, with 70% of variance explained by attitude, subjective norms and perceived behavioural control. Other significant predictors of intentions were control beliefs, normative beliefs and health value. Beliefs underlying dietary supplement use revealed differences between supplement users and non-users in relation to the notion that taking dietary supplements acts as an insurance against possible ill-health, with supplement users believing more strongly than non-users that taking dietary supplements would stop them getting ill and help them to be healthy. Both users and non-users of supplements also perceived the media, in the form of books and magazines, to be a powerful influence on a person's decision to use supplements. The findings of this study highlight the potential of the TPB in exploring supplement-taking behaviour, while throwing light on the factors influencing an individual's motivations to use dietary supplements.Theory of planned behaviour Dietary supplements Attitudes Intentions Nutrient deficiency UK
- âŠ