A thin flat superconductor of arbitrary shape and with arbitrary in-plane and
out-of-plane anisotropy of flux-line pinning is considered, in an external
magnetic field normal to its plane.
It is shown that the general three-dimensional critical state problem for
this superconductor reduces to the two-dimensional problem of an infinitely
thin sample of the same shape but with a modified induction dependence of the
critical sheet current. The methods of solving the latter problem are well
known. This finding thus enables one to study the critical states in realistic
samples of high-Tc superconductors with various types of anisotropic flux-line
pinning. As examples, we investigate the critical states of long strips and
rectangular platelets of high-Tc superconductors with pinning either by the
ab-planes or by extended defects aligned with the c-axis.Comment: 13 pages including 13 figure files in the tex