13 research outputs found
Trabajamos la interculturalidad en las corales infantiles
Treball Final de Grau en Mestre o Mestra d'Educació Primària. Codi: MP1040. Curs: 2014/2015La idea principal de nuestro trabajo es informar sobre el rol que desarrollan las corales escolares de
nuestro pueblo y aportar un proyecto propio con la de nuestro colegio, donde el incentivo o aliciente
principal sea el de un trabajo musical con un tono multicultural.
En nuestra reflexión pretendemos aclarar en definitiva, si dentro del amplio espectro de recursos
educativos que ofrece la música, la coral escolar puede ser una herramienta efectiva para trabajar la
multiculturalidad. Ya de paso, descubrir sus otras propiedades usando de escaparate las corales que
hay en nuestro pueblo, nos aportará, esperemos, una información muy interesante acerca de estas
formaciones.
Para ello contamos con la total disposición de nuestro supervisor, quien es director de la coral escolar
con la que trabajaremos nosotros como una extraescolar más, en la cual los niños y niñas trabajan la
multiculturalidad y el respeto hacia el igual. Además, entrevistar al resto de directores de la localidad
(Vinarós actualmente cuenta con 4 colegios con coral) , nos detallará aún más los diversos objetivos
que pueden lograrse y sus diferentes métodos.
Por otro lado, a la hora de trabajar de manera práctica nuestra idea, seleccionamos la cultura
africana, ya que aún siendo uno de los continentes con más movimientos migratorios a España,
creemos que se desconocen bastante sus “músicas”. Éstas, resultan idóneas para trabajar el ritmo y
la expresividad o la creatividad, ya que suelen ser muy vivas y propensas a la libre improvisación e
interpretación. Dado que el continente es muy grande, puntualizaremos y situaremos la cultura
trabajada en el norte de áfrica, donde existen países como Marruecos que tienen una gran
representación migratoria en Vinarós. Por último, concretar que la creación de instrumentos exóticos o la interpretación de obras de origen
extranjero, serán nuestras claves principales para impulsar el movimiento multicultural. Será muy
interesante comprobar si tras todo esto, nuevos alumnos extranjeros se unen a la formación escolar
Energy‐aware strategies for task‐parallel sparse linear system solvers
This is the pre-peer reviewed version of the following article: Energy‐aware strategies for task‐parallel sparse linear system solvers, which has been published in final form at https://doi.org/10.1002/cpe.4633. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.We present several energy‐aware strategies to improve the energy efficiency of a task‐parallel preconditioned Conjugate Gradient (PCG) iterative solver on a Haswell‐EP Intel Xeon. These techniques leverage the power‐saving states of the processor, promoting the hardware into a more energy‐efficient C‐state and modifying the CPU frequency (P‐states of the processors) of some operations of the PCG. We demonstrate that the application of these strategies during the main operations of the iterative solver can reduce its energy consumption considerably, especially for memory‐bound computations
Convolutional neural nets for estimating the run time and energy consumption of the sparse matrix-vector product
Modeling the performance and energy consumption of the sparse matrix-vector product (SpMV) is essential to perform off-line analysis and, for example, choose a target computer architecture that delivers the best performance-energy consumption ratio. However, this task is especially complex given the memory-bounded nature and irregular memory accesses of the SpMV, mainly dictated by the input sparse matrix. In this paper, we propose a Machine Learning (ML)-driven approach that leverages Convolutional Neural Networks (CNNs) to provide accurate estimations of the performance and energy consumption of the SpMV kernel. The proposed CNN-based models use a blockwise approach to make the CNN architecture independent of the matrix size. These models are trained to estimate execution time as well as total, package, and DRAM energy consumption at different processor frequencies. The experimental results reveal that the overall relative error ranges between 0.5% and 14%, while at matrix level is not superior to 10%. To demonstrate the applicability and accuracy of the SpMV CNN-based models, this study is complemented with an ad-hoc time-energy model for the PageRank algorithm, a popular algorithm for web information retrieval used by search engines, which internally realizes the SpMV kernel
Characterization of Multicore Architectures using Task-Parallel ILU-type Preconditioned CG Solvers
Ponència presentada al 2nd Workshop on Power-Aware Computing (PACO 2017) Ringberg Castle, Germany, July, 5-8 2017We investigate the eficiency of state-of-the-art multicore processors using
a multi-threaded task-parallel implementation of the Conjugate Gradient
(CG) method, accelerated with an incomplete LU (ILU) preconditioner.
Concretely, we analyze multicore architectures with distinct
designs and market targets to compare their parallel performance and
energy eficiency
Harvesting Energy in ILUPACK via Slack Elimination
Ponència presentada al 2nd Workshop on Power-Aware Computing (PACO 2017) Ringberg Castle, Germany, July, 5-8 2017We develop a new energy-aware methodology to improve the energy
consumption of a task-parallel preconditioned Conjugate Gradient iter-
ative solver on a Haswell-EP Intel Xeon. This technique leverages the
power-saving modes of the processor and the frequency range of the
userspace Linux governor, modifying the CPU frequency for some oper-
ations. We demonstrate that its application during the main operations
of the PCG solver can reduce its energy consumption
Iteration-fusing conjugate gradient for sparse linear systems with MPI + OmpSs
In this paper, we target the parallel solution of sparse linear systems via iterative Krylov subspace-based method enhanced with a block-Jacobi preconditioner on a cluster of multicore processors. In order to tackle large-scale problems, we develop task-parallel implementations of the preconditioned conjugate gradient method that improve the interoperability between the message-passing interface and OmpSs programming models. Specifically, we progressively integrate several communication-reduction and iteration-fusing strategies into the initial code, obtaining more efficient versions of the method. For all these implementations, we analyze the communication patterns and perform a comparative analysis of their performance and scalability on a cluster consisting of 32 nodes with 24 cores each. The experimental analysis shows that the techniques described in the paper outperform the classical method by a margin that varies between 6 and 48%, depending on the evaluation
Communication in task-parallel ILU-preconditioned CG solversusing MPI + OmpSs
We target the parallel solution of sparse linear systems via iterative Krylov subspace–based methods enhanced with incomplete LU (ILU)-type preconditioners on clusters of multicore processors. In order to tackle large-scale problems, we develop task-parallel implementations of the classical iteration for the CG method, accelerated via ILUPACK and ILU(0) preconditioners, using MPI + OmpSs. In addition, we integrate several communication-avoiding strategies into the codes, including the butterfly communication scheme and Eijkhout's formulation of the CG method. For all these implementations, we analyze the communication patterns and perform a comparative analysis of their performance and scalability on a cluster consisting of 16 nodes, with 16 cores each
Characterizing the efficiency of multicore and manycore processors for the solution of sparse linear systems
We analyze the efficiency of servers equipped with state-of-the-art general-purpose multicore processors as well as platforms based on accelerators such as graphics processing units (GPUs) and the Intel Xeon Phi. Following the proposal recently advocated in the High Performance Conjugate Gradient (HPCG) benchmark, we leverage for this purpose efficient implementations of ILUPACK, a preconditioned solver for sparse linear systems that comprises numerical kernels and data access patterns analogous to those of HPCG. Our study analyzes the (computational) performance and energy efficiency, with two different metrics for each: time/floating-point throughput for the former; and energy/floating-point throughput-per-Watt for the latter.This work was supported by the CICYT project
TIN2011-23283 of MINECO and FEDER, and the EU Project FP7
318793 “EXA2GREEN”
Adapting concurrency throttling and voltage–frequency scaling for dense eigensolvers
We analyze power dissipation and energy consumption during the execution
of high-performance dense linear algebra kernels on multi-core processors. On top of
this analysis, we propose and evaluate several strategies to adapt concurrency throttling
and the voltage–frequency setting in order to obtain an energy-efficient execution of
LAPACK’s routine dsytrd. Our strategies take into account the differences between
the memory-bound and CPU-bound kernels that govern this routine, and whether
problem data fits into the processor’s last level cache.This work was supported by the CICYT Project TIN2011-23283 of MINECO and
FEDER, the EU Project FP7 318793 “EXA2GREEN”, and the FPU program of the Ministerio de Educación, Cultura y Deporte
Reproducibility of parallel preconditioned conjugate gradient in hybrid programming environments
[EN] The Preconditioned Conjugate Gradient method is often employed for the solution of linear systems of equations arising in numerical simulations of physical phenomena. While being widely used, the solver is also known for its lack of accuracy while computing the residual. In this article, we propose two algorithmic solutions that originate from the ExBLAS project to enhance the accuracy of the solver as well as to ensure its reproducibility in a hybrid MPI + OpenMP tasks programming environment. One is based on ExBLAS and preserves every bit of information until the final rounding, while the other relies upon floating-point expansions and, hence, expands the intermediate precision. Instead of converting the entire solver into its ExBLAS-related implementation, we identify those parts that violate reproducibility/non-associativity, secure them, and combine this with the sequential executions. These algorithmic strategies are reinforced with programmability suggestions to assure deterministic executions. Finally, we verify these approaches on two modern HPC systems: both versions deliver reproducible number of iterations, residuals, direct errors, and vector-solutions for the overhead of less than 37.7% on 768 cores.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was partially supported by the European Union's Horizon 2020 research, innovation program under the Marie Sklodowska-Curie grant agreement via the Robust project No. 842528 as well as the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the H2020 EC RIA Programme; in particular, the author gratefully acknowledges the support of Vicenc comma Beltran and the computer resources and technical support provided by BSC. The researchers from Universitat Jaume I (UJI) and Universitat Polit ' ecnica de Valencia (UPV) were supported by MINECO project TIN2017-82972-R. Maria Barreda was also supported by the POSDOC-A/2017/11 project from the Universitat Jaume I.Iakymchuk, R.; Barreda Vayá, M.; Graillat, S.; Aliaga, JI.; Quintana Ortí, ES. (2020). Reproducibility of parallel preconditioned conjugate gradient in hybrid programming environments. International Journal of High Performance Computing Applications. 34(5):502-518. https://doi.org/10.1177/1094342020932650S502518345Aliaga, J. I., Barreda, M., Flegar, G., Bollhöfer, M., & Quintana-Ortí, E. S. (2017). Communication in task-parallel ILU-preconditioned CG solvers using MPI + OmpSs. Concurrency and Computation: Practice and Experience, 29(21), e4280. doi:10.1002/cpe.4280Bailey, D. H. (2013). High-precision computation: Applications and challenges [Keynote I]. 2013 IEEE 21st Symposium on Computer Arithmetic. doi:10.1109/arith.2013.39Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., … van der Vorst, H. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. doi:10.1137/1.9781611971538Burgess, N., Goodyer, C., Hinds, C. N., & Lutz, D. R. (2019). High-Precision Anchored Accumulators for Reproducible Floating-Point Summation. IEEE Transactions on Computers, 68(7), 967-978. doi:10.1109/tc.2018.2855729Carson, E., & Higham, N. J. (2018). Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM Journal on Scientific Computing, 40(2), A817-A847. doi:10.1137/17m1140819Collange, S., Defour, D., Graillat, S., & Iakymchuk, R. (2015). Numerical reproducibility for the parallel reduction on multi- and many-core architectures. Parallel Computing, 49, 83-97. doi:10.1016/j.parco.2015.09.001Dekker, T. J. (1971). A floating-point technique for extending the available precision. Numerische Mathematik, 18(3), 224-242. doi:10.1007/bf01397083Demmel, J., & Hong Diep Nguyen. (2013). Fast Reproducible Floating-Point Summation. 2013 IEEE 21st Symposium on Computer Arithmetic. doi:10.1109/arith.2013.9Demmel, J., & Nguyen, H. D. (2015). Parallel Reproducible Summation. IEEE Transactions on Computers, 64(7), 2060-2070. doi:10.1109/tc.2014.2345391Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., & Zimmermann, P. (2007). MPFR. ACM Transactions on Mathematical Software, 33(2), 13. doi:10.1145/1236463.1236468Hida, Y., Li, X. S., & Bailey, D. H. (s. f.). Algorithms for quad-double precision floating point arithmetic. Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001. doi:10.1109/arith.2001.930115Hunold, S., & Carpen-Amarie, A. (2016). Reproducible MPI Benchmarking is Still Not as Easy as You Think. IEEE Transactions on Parallel and Distributed Systems, 27(12), 3617-3630. doi:10.1109/tpds.2016.2539167IEEE Computer Society (2008) IEEE Standard for Floating-Point Arithmetic. Piscataway: IEEE Standard, pp. 754–2008.Kulisch, U., & Snyder, V. (2010). The exact dot product as basic tool for long interval arithmetic. Computing, 91(3), 307-313. doi:10.1007/s00607-010-0127-7Kulisch, U. (2013). Computer Arithmetic and Validity. doi:10.1515/9783110301793Lawson, C. L., Hanson, R. J., Kincaid, D. R., & Krogh, F. T. (1979). Basic Linear Algebra Subprograms for Fortran Usage. ACM Transactions on Mathematical Software, 5(3), 308-323. doi:10.1145/355841.355847Lutz, D. R., & Hinds, C. N. (2017). High-Precision Anchored Accumulators for Reproducible Floating-Point Summation. 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH). doi:10.1109/arith.2017.20Mukunoki, D., Ogita, T., & Ozaki, K. (2020). Reproducible BLAS Routines with Tunable Accuracy Using Ozaki Scheme for Many-Core Architectures. Lecture Notes in Computer Science, 516-527. doi:10.1007/978-3-030-43229-4_44Nguyen, H. D., & Demmel, J. (2015). Reproducible Tall-Skinny QR. 2015 IEEE 22nd Symposium on Computer Arithmetic. doi:10.1109/arith.2015.28Ogita, T., Rump, S. M., & Oishi, S. (2005). Accurate Sum and Dot Product. SIAM Journal on Scientific Computing, 26(6), 1955-1988. doi:10.1137/030601818Ozaki, K., Ogita, T., Oishi, S., & Rump, S. M. (2011). Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications. Numerical Algorithms, 59(1), 95-118. doi:10.1007/s11075-011-9478-1Priest, D. M. (s. f.). Algorithms for arbitrary precision floating point arithmetic. [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic. doi:10.1109/arith.1991.145549Rump, S. M., Ogita, T., & Oishi, S. (2008). Accurate Floating-Point Summation Part I: Faithful Rounding. SIAM Journal on Scientific Computing, 31(1), 189-224. doi:10.1137/050645671Rump, S. M., Ogita, T., & Oishi, S. (2009). Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest. SIAM Journal on Scientific Computing, 31(2), 1269-1302. doi:10.1137/07068816xRump, S. M., Ogita, T., & Oishi, S. (2010). Fast high precision summation. Nonlinear Theory and Its Applications, IEICE, 1(1), 2-24. doi:10.1587/nolta.1.2Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. doi:10.1137/1.9780898718003Wiesenberger, M., Einkemmer, L., Held, M., Gutierrez-Milla, A., Sáez, X., & Iakymchuk, R. (2019). Reproducibility, accuracy and performance of the Feltor code and library on parallel computer architectures. Computer Physics Communications, 238, 145-156. doi:10.1016/j.cpc.2018.12.00