
Special Issue Paper

Convolutional neural nets for estimating
the run time and energy consumption of
the sparse matrix-vector product

Maria Barreda, Manuel F Dolz and M Asunción Castaño

Abstract
Modeling the performance and energy consumption of the sparse matrix-vector product (SPMV) is essential to perform
off-line analysis and, for example, choose a target computer architecture that delivers the best performance-energy con-
sumption ratio. However, this task is especially complex given the memory-bounded nature and irregular memory accesses
of the SPMV, mainly dictated by the input sparse matrix. In this paper, we propose a Machine Learning (ML)-driven approach
that leverages Convolutional Neural Networks (CNNs) to provide accurate estimations of the performance and energy
consumption of the SPMV kernel. The proposed CNN-based models use a blockwise approach to make the CNN archi-
tecture independent of the matrix size. These models are trained to estimate execution time as well as total, package, and
DRAM energy consumption at different processor frequencies. The experimental results reveal that the overall relative error
ranges between 0.5% and 14%, while at matrix level is not superior to 10%. To demonstrate the applicability and accuracy of
the SPMV CNN-based models, this study is complemented with an ad-hoc time-energy model for the PageRank algorithm, a
popular algorithm for web information retrieval used by search engines, which internally realizes the SPMV kernel.

Keywords
Sparse matrix-vector multiplication (SPMV), performance modeling, energy modeling, supervised learning, convolutional
neural networks (CNN), PageRank algorithm

1 Introduction

Sparse matrices often appear in the solution of large linear

systems as part of complex simulations, such as, for

instance, in finite element methods, economic modeling

and search methodologies for information retrieval. In

these simulations, the Sparse Matrix-Vector (SPMV) prod-

uct plays a fundamental role for the iterative solution of

sparse linear systems, as it frequently dictates the execution

time and energy consumption of the whole algorithm.

Indeed, the SPMV operation has been characterized as one

of the most important computational kernels in science and

engineering for the last decade (Gkountouvas et al., 2013).

Several algorithmic characteristics render the study of

the SPMV kernel challenging: concretely, its irregular and

indirect memory accesses, which negatively impact the

cache spatial and temporal localities. These effects are, in

turn, translated into a very low flop per byte ratio, leading

to bottlenecks in the memory access (Elafrou et al., 2017).

This not only adds significant overhead in the execution

time but also increases energy consumption. In fact, fetch-

ing data from the DRAM for an operation consumes an

amount of energy which is orders of magnitude higher than

the computation itself. Thus, as computation becomes more

energy-efficient, the cost of data movement gradually

becomes a more relevant issue (Llopis et al., 2016). To

progress in this direction, time-energy models for

memory-bounded, power-hungry algorithms, such as the

SPMV kernel, are key pieces to enable the design of a new

generation of energy-efficient memory architectures.

Some of the aspects that dictate the poor performance of

the SPMV kernel are the non-zero sparsity pattern and the

row-density of the sparse matrix involved in the computa-

tion.1 These elements, together with the sparse matrix stor-

age format, such as Compressed Sparse Row (CSR),

Coordinate list (COO), ELLPACK, etc. determine the

sequence of memory accesses and, consequently, the suc-

cession of time-costly cache misses. Over the last few

years, a considerable amount of research has focused on

Departament d’Enginyeria i Ciència dels Computadors, Universitat Jaume

I de Castelló, Spain

Corresponding author:

Manuel F Dolz, Departament d’Enginyeria i Ciència dels Computadors,

Universitat Jaume I, Avda. Sos Baynat s/n, Castellón de la Plana, Castellón

12071, Spain.

Email: dolzm@uji.es

The International Journal of High
Performance Computing Applications
1–14
ª The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342020953196
journals.sagepub.com/home/hpc

https://orcid.org/0000-0001-9466-3398
https://orcid.org/0000-0001-9466-3398
mailto:dolzm@uji.es
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342020953196
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342020953196&domain=pdf&date_stamp=2020-08-26

designing performance/energy models for the SPMV kernel

(see Elafrou et al., 2017; Malossi et al., 2014 and the refer-

ences therein). These models often rely on architectural

memory-parameters (such as memory bandwidth or cache

replacement policies) and the sparse matrix features to esti-

mate the theoretical throughput (operations per second) at

which the SPMV product can be realized. Similarly, energy

models use average net-energy values per non-zero element

which, in general, only provide estimations of the total

energy consumption drawn by the processor. Furthermore,

all of them require both a deep understanding of the pro-

cessor architecture as well as a detailed analysis of the

SPMV implementation (Li et al., 2015).

Machine learning (ML), a subset of Artificial Intelli-

gence algorithms, is an alternative to analytical models that

can automatically derive mathematical models from sam-

ple data with minimum human intervention. Neural Net-

works (NNs), in particular, have shown the ability to

approximate complex nonlinear functions. Specifically,

Convolutional Neural Networks (CNNs) (Gu et al., 2018)

may provide a powerful means to capture spatial and tem-

poral dependencies using abstract representations of the

sparse matrices involved in the SPMV through a set of

convolutional filters. In this paper, we extend the work in

(Barreda et al., 2020c) with the design of a more accurate

execution time model and a new energy consumption

model using CNNs as base algorithms. In particular, our

paper makes the following contributions:

� We leverage CNNs to model the execution time

and energy consumption of the SPMV on an Intel

Xeon Haswell core using CSR (Eijkhout and

Pozo, 1994) as the storage format.2 The approach

carries over to any other specialized sparse matrix

storage format.

� We study the estimations of these metrics consider-

ing different operating frequencies of the Intel Xeon

Haswell core.

� We leverage the model migration technique pre-

sented in (Barreda et al., 2020c) for the different

energy metrics and frequencies studied.

� We propose a blockwise realization to make the

CNN model architecture independent of the sparse

matrix dimension input blocks.

� We introduce a normalization method for each input

block in order to facilitate the training of the CNNs.

� We evaluate the accuracy and demonstrate the

robustness of the CNN-based models using a repre-

sentative subset of real applications from the Suite-

Sparse Matrix collection (Davis and Hu, 2011).

� We derive analytical models for estimating the run

time and energy consumption of the PageRank algo-

rithm. The presented piecewise models combine our

CNN-based models to infer the cost of the SPMV oper-

ation and the well-known roofline model to estimate

the time and energy for the remaining kernels present

in PageRank.

The most obvious application for our off-line time-

energy estimators is that, given trained models for a variety

of processor architectures, selecting the best option (pro-

cessor and configuration, e.g. operation frequency) does

not require direct access to the target platforms. In partic-

ular, inference can be run off-line on the (trained) models,

on a single architecture different from those which the

CNNs model. Also, being able to estimate the execution

cost of an irregular and challenging operation such as the

SPMV paves the way toward applying similar ML-driven

techniques to modeling the cost of memory accesses for

more complex numerical kernels or even general-purpose

applications.

The rest of this paper is organized as follows. Section 3

reviews some basic concepts about the SPMV kernel and

CNNs. Section 2 revisits a few other works related to per-

formance and energy modeling and/or linear algebra oper-

ations using NNs. Section 4 describes the strategy to

accommodate the CSR format as a valid input for the CNN

models and details the architecture of the CNN. Section 5

evaluates the training process of the proposed models tuned

with hyperparameter optimization and analyzes the accu-

racy attained by the networks for the SPMV. Section 6

presents two piece-models that combine the CNN-based

predictors with the roofline strategy to estimate the execu-

tion time and energy consumption of the PageRank algo-

rithm. Finally, Section 7 offers a few concluding remarks

and summarizes future research lines.

2 Related work

Artificial NNs were introduced in the 1950s. They were

widely used in the 1980s although their abilities were com-

putationally limited. In the last years, the availability of big

data and the increasing computational power of modern

accelerator architectures have allowed deeper NNs, result-

ing in Deep Learning (DL). Besides, tools like Keras (Chol-

let, 2015) and TensorFlow (Abadi et al., 2015) have

contributed to making neural networks and DL more acces-

sible. CNNs (Gu et al., 2018), a class of deep NNs with at

least one convolutional layer, have shown excellent accu-

racy on many ML-related areas (Gu et al., 2018; LeCun

et al., 2015; Schmidhuber, 2015). However, the potential of

DL is still largely unexplored in linear algebra. In particu-

lar, only a few works related to the SPMV operation and/or

performance, power and energy modeling have been pre-

viously approached using NNs.

Götz and Anzt (2018) leverage 2D CNNs to detect

strongly connected blocks of sparse matrices in order to

derive block-Jacobi preconditioners and accelerate the

iterative solution of the corresponding linear system. Simi-

larly, both Zhao et al. (2018) and Cui et al. (2018) feed

matrix sparsity images into CNNs which are trained to

select the most adequate matrix storage format of the SPMV

operation. Zhao et al. also employ transfer learning to alle-

viate cross-architecture migration of the CNN-based mod-

els. Nisa et al. (2018) predict the best storage format for the

2 The International Journal of High Performance Computing Applications XX(X)

SPMV operation. However, instead of using 2D images as

in the previous works, sparsity metrics are used as inputs

for a Multilayer Perceptron (MLP).

Concerning performance and power modeling, Tiwari

et al. (2012) use kernel-specific compiler-based optimiza-

tion parameters and hardware tunables to train MLPs and

estimate the performance, power, and energy usage of sev-

eral computational kernels. Both Benatia et al. (2016) and

Nisa et al. (2018) leverage MLPs to predict the GPU per-

formance of the SPMV kernel using different matrix storage

formats on GPU architectures. Song et al. (2013) derive

power models for GPU-based systems by training MLPs

for distinct CUDA kernels using hardware performance

counters. Endrei et al. (2019) use a MLP to predict Pareto

frontiers in order to analyze the trade-offs between perfor-

mance and energy usage, for several parallel kernels and

complex application workloads.

The aforementioned performance and power modeling

techniques are different to the approach proposed in this

work in four main aspects: i) we use CNNs instead of

MLPs, so that spatial features of sparse matrices can be

automatically captured; ii) we feed the sparse matrix struc-

ture directly into the CNN instead of using sparse matrix

metrics related to such structure or hardware performance

counters; iii) our blockwise methodology allows creating

large datasets to train the CNNs in order to estimate the run

time and energy consumption of the SPMV operation; and

iv) the use of CNNs for estimating the aforementioned

metrics at different frequencies allows developers to select

the computer architecture with the best performance-

energy consumption ratio.

3 Background

3.1 The sparse matrix-vector product

The SPMV kernel computes the sparse-matrix-vector prod-

uct y ¼ Ax, where A is an input sparse matrix of size m� n

(with nnz non-zero elements); x is an input dense vector, of

size n; and y is an output dense vector, of size m. Usually,

the elements of A are stored using the Compressed Sparse

Row (CSR) format, as this provides a flexible, memory-

efficient, and architecture-agnostic solution. This format

stores the matrix using three arrays that contain, respec-

tively, the non-zero values (vval), the row pointers (vptr),

and the column index of each element (vpos). Figure 1

shows a simple example of a 4� 4 matrix stored using the

CSR format.

Algorithm 1 presents the SPMV implementation. Spe-

cifically, the external loop (indexed by i) iterates over the

matrix rows, whereas the internal loop (indexed by j) pro-

gresses through the entries of each row, using the vptr and

vpos vectors to recover the corresponding index to access x.

Finally, the value at the coordinate ði; jÞ of A is retrieved

using the vval array. As previously mentioned, the irregular

memory accesses of this implementation occur while

retrieving the elements of the x vector, which are indirectly

accessed through the vpos array.

3.2 Convolutional neural networks

CNNs usually consist of a collection of convolutional

(Conv) layers followed by a reduced number of fully-

connected (FC) layers (Gu et al., 2018). The result of con-

volving the filter over the entire Conv layer is called feature

map. Different filters can be applied in a Conv layer to

obtain multiple feature maps. The resulting activations in

the feature maps are then passed through a nonlinear func-

tion, such as the Rectified Linear Unit (ReLU), which has

been reported to achieve fast training in supervised learning

of DL networks (Glorot et al., 2011).

Pooling layers semantically merge similar information

by creating downsampled and summarized versions of the

features detected by the Conv layers (Boureau et al., 2010).

Consequently, they reduce the number of connections

between Conv layers and the computational power required

to process the data. Typical pooling functions are maxi-

mum and average, though other more complex functions,

such as gated max-average pooling, are also possible (Lee

et al., 2015).

Dropout layers are frequently included in CNNs to

improve the learning process and to prevent network over-

fitting. Dropout is a regularization technique that ignores

randomly-selected neurons and their corresponding

weights during training. This prevents the co-dependency

among neurons which in turn leads to a better generaliza-

tion on new input data.

In the FC layers, each neuron is connected to all neurons

of the next layer. FC layers integrate all the high-level

features extracted by the previous Conv layers to produce

the final outputs. Depending on whether the CNN is a

realization of a classification problem or a regression

model, the last layer may contain as many neurons as

classes or a single one. In the former case, the neurons are

activated via nonlinear functions (e.g., sigmoid, softmax, or

Figure 1. Example of a sparse matrix A stored in CSR format as
three vectors: vval, vptr and vpos. Indices are numbered starting at 0.

Algorithm 1. Realization of the SPMV algorithm using the CSR
format.

Barreda et al. 3

ReLU), while in the latter a linear function activates the

single neuron.

4 Modeling the SPMV via CNNs

In this section, we detail the methodology employed to

estimate the performance and energy consumption of the

SPMV kernel using CNNs. In our approach, we generate

individual CNN models3 for the estimated metrics, i.e. exe-

cution time and energy. Also, considering that our target

core processor can work at different frequencies and that

the energy consumption (measured via the Intel RAPL) can

be split into three different components (total, package, and

DRAM), distinct CNN models are considered for each

evaluated metric (execution time, and total, package, and

DRAM energy consumption) and frequency.

4.1 Methodology

The SPMV product is a memory-bound operation in which

the irregular sparsity pattern of matrix A dictates the non-

sequential accesses to the x vector and, therefore, the vol-

ume of L2/L3 cache misses and DRAM memory accesses.

In this sense, the vpos array can be considered as a key

element to understand the different arithmetic-to-memory

access intensities that, in turn, allow to estimate both the

performance and energy consumption of the SPMV kernel.

With this idea in mind, we design a CNN that will learn

from the information contained in vpos. Using this

approach, the convolutional filters capture meaningful fea-

tures in this array (e.g., patterns of distances between non-

zero entries), which may yield useful estimations of the

SPMV performance and energy consumption. For this pur-

pose, we preprocess the vpos array in the following way.

First, we compute the differences between consecutive ele-

ments of vpos, instead of directly passing the column

indices to the CNN. This eases the learning process, as

we guide the network to directly focus on the column dis-

tances. In a second step, we normalize the input data via the

log function in order to narrow the range of values that the

column distances may take and to facilitate the network

learning. In sum, each element of the vpos array is trans-

formed into vpos
0 ½i� ¼ logðjvpos½iþ 1� � vpos½i�j þ 1Þ.

Figure 2 resumes the workflow adopted in the modeling

task. Given that the sparse matrices may present large var-

iations on their size and number of non-zero entries (nnz),

we split the transformed vpos
0
array into chunks (or blocks)

of size b which can then be sequentially fed to a CNN

design with a constant number of inputs. With this

approach, the CNNs can be used uniformly to predict indi-

vidual execution times and energy consumptions of equal-

sized blocks, which may belong to any sparse matrix,

regardless of its size and number of non-zeros. Thus, con-

sidering that ti and ei are, respectively, the execution time

and energy consumption per non-zero element of the i-th

block of A, the estimated total execution time and energy

consumption for this matrix can be calculated as the aggre-

gation of the time/energy-per-element for the dnnz=b ¼ se
blocks multiplied by b; that is, Ttotal � b

Ps
i¼1ti and

Etotal � b
Ps

i¼1ei. Note that the latter expression applies for

the three energy components studied, i.e. total, package,

and DRAM. The proposed design iteratively supplies each

block of the transformed vpos
0

to the trained CNN so that

the outputs obtained by the network correspond to predic-

tions of the partial execution time/energy (per element) of

this block, which can then be added to obtain the total

execution time or energy consumption of the SPMV for the

matrix A.

The strategy of partitioning the vpos
0

array into blocks

forces us to implement a blockwise version of the classic

CSR-based SPMV Algorithm 1 to generate the training

dataset for the CNNs, in which each block of vpos
0

is

labeled with its corresponding ratios of execution time and

energy consumption (total, package, and DRAM) per non-

zero element. In a previous work (Barreda et al., 2020c), we

analyzed the impact of the block size in the time predic-

tions and concluded that the proposed network architec-

tures deliver accurate results for small block sizes. The

reason is that, in general, small blocks reflect a small set

of sparsity patterns which, in turn, can be better captured by

the CNN filters. Consequently, having small block sizes

increases the execution time and energy consumption

Figure 2. Workflow for modeling the SPMV performance and energy consumption. The term “M” in the expression denotes any of the
selected metrics: execution time, total, package or DRAM energy consumption.

4 The International Journal of High Performance Computing Applications XX(X)

variability among blocks, so that the predictions vary in a

wider interval. However, this is only true to a certain

extent. In particular, using block sizes that are too small

(below 250) may negatively affect their execution time due

to cache data locality effects. On the other hand, working

with large block sizes may lead to homogeneous execution

time/energy labels, preventing the CNN to learn important

sparsity features comprised in a single block. Thus, taking

into account the lessons learned in that study, in this work

we use a fixed block size b¼ 250. For this configuration, if

the number of nnz entries is not multiple of b, the remaining

block of size b
0
< b is discarded. In our case, this is safe

enough as the smallest value of nnz for the selected sparse

matrices is always higher than 1 million. In consequence,

with b ¼ 250, only one block among 4;000 is discarded.

4.2 Network architecture

Considering our blockwise strategy, we aim to design a

CNN architecture that offers accurate estimates of the eval-

uated metrics for the SPMV operation executed at different

processor frequencies. Our goal is thus to design a simple

network architecture, inspired by the structure of well-

known CNNs, such as AlexNet, LeNet or VGG, and

demonstrate that it can also deliver accurate execution

time/energy estimations of the SPMV kernel.

For the network architecture, we designed a one-

dimensional (1D) CNN-based regression model, where the

activation of the single output neuron is the estimated value

for the studied metric per non-zero element. In our previous

study (Barreda et al., 2020c), we tested different sequences of

convolutional and pooling layers, achieving similar perfor-

mances in all of them. Consequently, in this work, we adopted

the simplest combination, which consists of a sequence of one

convolutional layer followed by a max-pooling layer, which

is repeated twice. For the second part of the network, we

appended some FC layers to combine the features captured

in the previous convolutional stages. Also, we included a

dropout layer between any two consecutive FC layers.

Finally, the last FC layer generates the estimated output.

It is important to remark that some configuration para-

meters of the networks are established as hyperparameters,

e.g. the number of stacked FC layers at the end of the net,

the number of neurons per FC layer, and the number of

filters in the convolutional layers. The values adopted for

these parameters are set by a hyperparameter optimization

tool before the training stage.

Given the high number of combinations among the

selected metrics and the frequencies, obtaining adequate

values for the hyperparameters becomes a time-

consuming process. Therefore, we only calculate the hyper-

parameters for the models estimating the execution time

and total energy consumption at the highest processor fre-

quency. Taking into account the distinct nature and units of

the modeled metrics, it is reasonable that the models for the

rest of frequencies and metrics (package and DRAM

energy) can inherit the hyperparameters of the correspond-

ing metric, i.e. execution time or energy consumption.

5 Experimental evaluation

In this section, we describe i) the generation of the training

and testing datasets; ii) the hyperparameter optimization and

training process; and iii) the testing evaluation with a set of

sparse matrices through relative mean errors of the SPMV

for the selected metrics and frequencies. To carry out these

tasks of the experimental evaluation, we have employed the

following hardware and software components:

� Hardware:

- The compute node where the networks were

trained consisted of two Intel Xeon E5-2698,

with a total of 40 cores clocked at 2.20 GHz, and

four NVIDIA Tesla P100 GPUs with 16 GB of

DRAM at 1.48 GHz interconnected via NVLink.

- The execution time and energy consumption data

corresponding to the SPMV operation were

obtained on an Intel Xeon E5-2630 core running

at the selected frequencies (f1:2; 1:6; 2:0; 2:4g
GHz). These frequencies were set via the user-

space governor from the acpi-cpufreq

driver using thecpufreq-setLinux utility. The

energy consumption was measured via the Intel

RAPL interface and gathered at three different

levels (total, package, and DRAM, where total

¼ packageþDRAM) for this specific processor.

� Software: The framework for building the CNNs was

Keras v2.2.4 (Chollet, 2015) on top of TensorFlow

r1.10 (Abadi et al., 2015). Moreover, we leveraged

Hyperas v0.4.1 (Pumperla, 2017), a wrapper around

Hyperopt (Bergstra et al., 2013) that implements an

algorithm for hyperparameter optimization targeted

to Keras-based models. Finally, the ad-hoc SPMV

benchmark was implemented in C and compiled with

gcc 5.3.0 with the -march¼native -O1 flags.

The training and evaluation workflow proceeds as fol-

lows. First, we build the training and testing datasets, where

each input block is tagged with the corresponding mea-

sured values related to the selected metrics by executing

the SPMV operation on the target processor core at the

considered frequencies. Next, we obtain the tuned versions

of the models by performing the hyperparameter search.

Afterward, we train the models using the aforementioned

dataset. Finally, for each sparse matrix in the testing data-

set, we apply the trained models to estimate the total exe-

cution time and the energy consumptions of the SPMV

operation (inference) and compute the relative errors con-

cerning the metrics and frequencies.

5.1 Obtaining the dataset

The training and testing datasets were obtained by realizing

the blockwise SPMV operation at the CPU frequencies for

Barreda et al. 5

the studied sparse matrices, as detailed in Section 4.1, while

measuring the metrics per non-zero element in each vpos
0

block. To this end, we selected 186 sparse matrices from

the SuiteSparse Matrix Collection (Davis and Hu, 2011)

with a number of non-zeros ranging between 1 M and 10

M. The time taken to preprocess the sparse matrices, realize

the blockwise SPMV and build the dataset took about a

week. From these matrices, 80% was dedicated for training,

while the remaining 20% was reserved for testing. Simi-

larly, 80% of the training dataset was utilized only for

training, and the remaining 20% was used for validation,

to guide the training process. In Barreda et al. (2020c) we

showed that the trained models for the time metric using

this dataset provide an appropriate generalization power.

Using too much training data could lead to a model which

overfits the problem. Also note that a concrete sparse

matrix with nnz non-zero entries yields nnz
b

� �
¼ nnz

250

� �
blocks that are part of the dataset.

To gain insights into the generated dataset, Figure 3

shows the dispersion points related to the blocks in the

dataset arranged according to their per non-zero execution

time and total, package, and DRAM energy consumptions

for the different frequencies at which the SPMV blocks

were computed. In the plots, we observe that roughly

92% of the total energy corresponds to the package, while

the remaining 8% is related to the DRAM component.

Also, we detect significant variations in the execution time

ranges per non-zero element which decreases with the fre-

quency. A similar effect occurs with all energy consump-

tion metrics. It is also remarkable that the point clouds in

the DRAM-related plot follow a less linear trend

concerning the time per non-zero element than those dis-

played in the total and package plots. Similarly, Table 1

displays the execution time and total/package/DRAM

energy consumption ranges, means and standard deviations

for the blocks in the dataset for the different frequencies.

These control values determine the metric ranges that our

blockwise SPMV kernel takes to process one unit of work,

i.e. a block.

In general, these observations reveal the need for accu-

rate models, as those presented in this work, since not all

the metrics for the matrix blocks in the dataset follow a

linear trend. Moreover, the distribution obtained in point

clouds exposes the need for CNN models that individually

estimate the four selected metrics and frequencies.

5.2 Tuning and training the models

The set of CNN models for estimating the selected metrics

at the different processor frequencies were implemented

using Keras on top of TensorFlow. During the tuning pro-

cess, we considered the set of hyperparameters listed in

Table 2. Specifically, the columns in the table show the

different choices for each hyperparameter together with the

values estimated by Hyperas for both the execution time

and total energy consumption models targeting the CPU

frequency 2.4 GHz. Hyperas is a hyperparameter optimiza-

tion tool for Keras models that operates on top of Hyperopt.

An advantage of Hyperas is that, instead of using a grid-

based search, it leverages Bayesian search algorithms, such

as the tree of Parzen estimators, to partially search the

parameter space for relatively optimal parameter settings

Figure 3. Dispersion plots for execution time vs total, package, and DRAM energies at different frequencies.

Table 1. Execution time and total/package/DRAM energy consumption ranges, means (m), and standard deviations (s) for the dataset
blocks of size b ¼ 250.

Frequency
Execution time (ms) Total energy (mJ) Package energy (mJ) DRAM energy (mJ)

(GHz) Range m s Range m s Range m s Range m s

1.2 [5.33, 8.29] 5.71 0.28 [57.32, 94.25] 64.11 3.35 [53.85, 88.27] 60.05 3.13 [2.94, 7.36] 4.06 0.25
1.6 [3.00, 4.68] 3.22 0.16 [44.85, 74.63] 51.35 2.78 [42.45, 69.70] 48.29 2.61 [1.99, 6.23] 3.05 0.21
2.0 [1.92, 2.97] 2.05 0.10 [37.56, 63.39] 43.60 2.46 [35.53, 59.95] 41.18 2.32 [1.48, 5.05] 2.44 0.18
2.4 [1.33, 2.06] 1.42 0.07 [34.52, 58.40] 39.58 2.51 [32.88, 55.39] 37.54 2.39 [1.14, 4.29] 2.03 0.16

6 The International Journal of High Performance Computing Applications XX(X)

(Bergstra et al., 2013). The time taken by Hyperas to per-

form the hyperparameter search for each model was about

a day.

In Table 2, the values in the tuples ðf 1; f 2Þ appearing in

the row labeled as “# of filters in blocks of Conv layers”

respectively specify the number of filters used in the first

(f1) and second (f2) Conv layers. Similarly, the values in the

last two columns for the hyperparameter labeled as “filter/

pool size in Conv/MaxPool layers” stand for the filter sizes

in the first and second Conv/MaxPool layers, respectively.

On the other hand, the number of values selected for the

hyperparameter “# of neurons in FC layers” depends on the

value obtained for the parameter “# of FC layers”. For

instance, the number of neurons for the energy models in

the last three FC layers are “100, 1000, 1,” respectively. In

the same way, the “rates in dropout layers” for these models

are 0.47 and 0.59 in each dropout layer. In our experiments,

we used an adaptive learning rate that was scaled by 0.1

when the mean squared error (MSE) did not improve any

longer. In this sense, the “initial learning rate” refers to the

starting value for the learning rate.

Recall that the hyperparameter values for the time

model at 2.4 GHz are inherited from those estimating the

same metric at lower frequencies. Similarly, the values

obtained for the total energy consumption model at 2.4

GHz are leveraged for training all remaining energy models

at any other frequency. This way of proceeding is justified

given the behavior observed in Figure 3, where, for exam-

ple, the package energy follows quite a similar trend con-

cerning the total energy. Also, this considerably reduces the

number of experiments for calculating the hyperparameters

of the models.

Once the values of the hyperparameters are set, the CNN

models are ready to be trained. In supervised learning, the

entire training dataset is usually divided randomly into the

training (in-sample) and validation (out-of-sample) (sub)-

sets. The first is used for estimating the model weights (and

biases), while the second is only leveraged to guide the

training process. Although this practice is well established,

the random division of a sample collection may bias the

weight estimation, affecting the performance of the models.

To this end, an important step prior to the subsequent

experimentation is to use a cross-validation scheme to

analyze the performance behavior among k data folds.

Cross-validation is a technique to assess how the models

generalize given an unseen independent dataset (Bishop,

2006). As in Barreda et al. (2020c), we used a 5-fold

cross-validation for the time model at 2.4 GHz and

observed that the training-validation partitioning does not

affect the accuracy of the models, given that there are

enough representative data in the considered partitions.

Therefore, we selected the first 20% samples of the entire

training set for validation. This criterion was adopted for

training all remaining models.

The purpose of the training is to minimize a loss func-

tion, given the regression-based nature of the models esti-

mating the time and energy per non-zero element. In this

work, the selected loss function is the mean squared error

(MSE), whose units are ns2 and nJ2 for the time and

energy-related models, respectively. During the training

of the models, this metric is computed for the validation

set after each trained batch and leveraged to determine the

point where the training shall stop. Concretely, the stopping

criteria detains the training process when the MSE does not

improve after 15 epochs. With these settings, we observed

that the number of epochs needed to reach a MSE plateau

and complete the training did not exceed 50 epochs on

average for all models. Although this work focuses solely

on evaluating the quality of the model estimations, we note

that the training process took about 7 hours, being less

time-consuming than the hyperparameter search.

5.3 Testing the models

Once the models were trained, the next step was to evaluate

them using the testing dataset, which was composed of 34

unseen sparse matrices. This testing step took a few min-

utes to complete on the compute node, for all matrix blocks

in each CNN model. To evaluate the models’ accuracy, we

use the relative error (RE) as the metric to account for the

difference between the predicted and measured values of

the modeled metrics. Concretely, the RE for the run time

(T) predicted for each block is defined as:

RET b
¼ jT

estimated � Tmeasured j
Tmeasured

: ð1Þ

Figure 4 displays the histogram and boxplots of the RE

obtained for each of the blocks comprising the matrices in

Table 2. Hyperparameters considered for the execution time and energy consumption models.

Hyperparameter Range of values Execution time models Energy consumption models

of filters in blocks of Conv layers fð16; 32Þ; ð32; 64Þg ð32; 64Þ ð32; 64Þ
Filter size in Conv layers f3; 5; 7; 9g � 1 3� 1/9� 1 5� 1/3� 1
Pool size in MaxPool layers f2; 3; 5; 7; 9g � 1 7� 1/5� 1 7� 1/7� 1
of FC layers f1; 2; 3g 2 3
of neurons in FC layers f10; 100; 1000g 1000; 1 100; 1000; 1
Rates in dropout layers Uð0; 1Þ 6:6� 10�4 0:47; 0:59
Optimizer algorithm fSGD; Adam; RMSpropg Adam Adam
Initial learning rate f10�1 ; 10�2; 10�3g 10�3 10�3

Batch size f32; 64; 128; 256g 256 256

Barreda et al. 7

the testing dataset. Focusing on the models predicting the

execution time, regardless of the frequency, the RE is

mostly below 4% and most of the errors are roughly

0.5%. For the total and package energy consumption mod-

els, the maximum RE is between 5% and 9%, though most

of the samples are, in general, within 2%. In contrast, the

RE for the models predicting the DRAM energy consump-

tion have a larger range and are much more dispersed than

those in the previous two metrics. Specifically, the maxi-

mum RE ranges between 10% and 14% where the samples

are slightly settled at 3%. A global observation for the

energy-related plots is that the variability of RE notably

increases with the frequency. In sum, the RE metrics for

the studied models range between 0.5% and 14%, which

indicates that the models provide fairly good estimations,

even those trained with the inherited hyperparameters.

As a complementary experiment, Figure 5 exposes the

RE per test matrix obtained by the trained CNNs for the

selected metrics and frequencies. This RE per matrix in the

run time is computed as:

RETM
¼

Xl

i¼1

Testimated
i �

Xl

i¼1

Tmeasured
i

�����
�����

Xl

i¼1

Tmeasured
i

; ð2Þ

where l is the number of blocks of a given matrix. In this

figure, the matrices in the plots are sorted according to the

RE delivered by the CNNs modeling the lowest frequency.

Concerning the execution time models, the RE is not higher

than 10% for all frequencies, while for some matrices the

estimation RE is below 0.1%. Similar results can be

observed in the models targeting the total and package

energy. The CNNs for the DRAM metric, however, deliver

slightly less accurate results. This is because the values

measured for the DRAM exhibit less predictable behavior,

as previously shown in Figure 4d. In global, the results

show that the RE is below 1% for roughly half of the tested

matrices for all metrics and frequencies. Besides, given that

the error is below 10%, the strategy of discarding the last

block of the vpos
0

array when this has less than b entries

does not significantly affect the predicted metric.

As the models predicting the execution time provide

slightly better estimations than the counterparts for the

energy consumption, in a separate study we compared the

RE of the energy-related models against a simple analytic

energy consumption model that multiplies the average

power of the corresponding energy metric by the time pre-

dicted by the CNN run time model. The results of this

comparison showed differences of less than 0.2% in favor

of the analytic model. In general, although the analytic

time-based model is able to reach similar accuracy as the

CNN model, our claim is that to building such model

requires: i) to obtain the dataset with both time and energy

measurements; ii) to compute the average power; and iii) to

train the CNN run time model. In contrast, the CNN energy

models take one step further by directly predicting energy

consumption using a dataset that does not need to be

labeled with run time measurements.

We have made available our SPMV kernel, datasets, and

the Keras modules for the hyperparameter search, training,

and testing the CNN models at our GitHub repository

(v1.0.0) (Barreda et al., 2020b) and at the Zenodo site

(Barreda et al., 2020a).

1.2

1.6

2.0

2.4

0 2 4 6

(a) (b)

(c) (d)

8 10 12 14

Relative error (%)

C
P

U
fr

eq
u

en
cy

(G
H

z)

1.2

1.6

2.0

2.4

0 2 4 6 8 10 12 14

Relative error (%)

C
P

U
fr

eq
u

en
cy

(G
H

z)

1.2

1.6

2.0

2.4

0 2 4 6 8 10 12 14

Relative error (%)

C
P

U
fr

eq
u

en
cy

(G
H

z)

1.2

1.6

2.0

2.4

0 2 4 6 8 10 12 14

Relative error (%)

C
P

U
fr

eq
u

en
cy

(G
H

z)

Figure 4. Histogram and boxplots for the estimation relative errors at block level obtained by the CNN models for the selected
metrics and frequencies on the testing matrix set. (a) Execution time. (b) Total energy consumption. (c) Package energy consumption.
(d) DRAM energy consumption.

8 The International Journal of High Performance Computing Applications XX(X)

6 Use case: the PageRank algorithm

In this section, we derive analytical models for estimating

execution time and energy consumption of the PageRank

algorithm, a popular method for web information retrieval

used by search engines (Bianchini et al., 2005). The reason

for selecting this algorithm is twofold: i) the core operation

in the PageRank algorithm is the SPMV, which allows us to

leverage the previously designed CNN-based models; and

ii) the popularity of the PageRank algorithm together with

the time-energy portion that the embedded SPMV con-

sumes, exposes the need for accurate time-energy models.

6.1 The PageRank algorithm

The PageRank algorithm builds upon the Markov chain

theory to determine that “a page is relevant if it is linked

by other relevant pages.” From a practical point of view,

PageRank boils down to the classical iterative power

10-4

10-3

10-2

10-1

100

101

10

(b)

(c)

(d)

(a)
2

s3
d
k
q
4
m

2

m
sc

2
3
0
5
2

sh
ip

se
c5

v
an

b
o
d
y

s3
d
k
t3

m
2

b
cs

st
k
3
6

sm
t

sh
ip

_
0
0
1

o
il

p
an

n
as

as
rb

sh
ip

se
c1

ec
o
lo

g
y
2

sh
ip

_
0
0
3

o
la

fu

ra
ef

sk
y
4

sh
ip

se
c8

th
re

ad

ct
2
0
st

if

n
d
3
k

g
y
ro

m
sc

1
0
8
4
8

D
u
b
co

v
a3

g
y
ro

_
k

D
u
b
co

v
a2

q
a8

fm

cf
d
2

th
er

m
o
m

ec
h
_
d
M

cf
d
1

o
ff

sh
o

re

ap
ac

h
e2

p
ar

ab
o
li

c_
fe

m

2
cu

b
es

_
sp

h
er

e

d
en

o
rm

al

R
el

at
iv

e
er

ro
r

(%
)

Sparse matrices

1.2 GHz

1.6 GHz

2.0 GHz

2.4 GHz

10-4

10-3

10-2

10-1

100

101

102

n
as

as
rb

s3
d
k
q
4
m

2

ec
o
lo

g
y
2

sm
t

sh
ip

se
c1

g
y
ro

sh
ip

se
c5

o
il

p
an

sh
ip

se
c8

ra
ef

sk
y
4

s3
d
k
t3

m
2

ct
2
0
st

if

m
sc

2
3
0
5
2

g
y
ro

_
k

v
an

b
o
d
y

sh
ip

_
0
0
3

n
d
3
k

b
cs

st
k
3
6

o
la

fu

sh
ip

_
0
0
1

th
re

ad

th
er

m
o
m

ec
h
_
d
M

D
u
b
co

v
a3

m
sc

1
0
8
4
8

D
u
b
co

v
a2

ap
ac

h
e2

o
ff

sh
o
re

q
a8

fm

cf
d
2

p
ar

ab
o
li

c_
fe

m

cf
d
1

2
cu

b
es

_
sp

h
er

e

d
en

o
rm

al

R
el

at
iv

e
er

ro
r

(%
)

Sparse matrices

1.2 GHz

1.6 GHz

2.0 GHz

2.4 GHz

10-4

10-3

10-2

10-1

100

101

102

sh
ip

se
c1

sh
ip

se
c8

s3
d
k
q
4
m

2

sm
t

D
u
b
co

v
a3

ra
ef

sk
y
4

g
y
ro

sh
ip

_
0
0
3

ec
o
lo

g
y
2

sh
ip

se
c5

v
an

b
o
d
y

s3
d
k
t3

m
2

g
y
ro

_
k

n
d
3
k

o
la

fu

ct
2
0
st

if

sh
ip

_
0
0
1

o
il

p
an

m
sc

2
3
0
5
2

th
re

ad

n
as

as
rb

b
cs

st
k
3
6

D
u
b
co

v
a2

m
sc

1
0
8
4
8

th
er

m
o
m

ec
h
_
d
M

ap
ac

h
e2

cf
d
2

q
a8

fm

o
ff

sh
o

re

cf
d
1

p
ar

ab
o
li

c_
fe

m

2
cu

b
es

_
sp

h
er

e

d
en

o
rm

al

R
el

at
iv

e
er

ro
r

(%
)

Sparse matrices

1.2 GHz

1.6 GHz

2.0 GHz

2.4 GHz

10-4

10-3

10-2

10-1

100

101

102

sh
ip

se
c8

sh
ip

se
c5

m
sc

2
3
0
5
2

D
u
b
co

v
a3

o
il

p
an

ec
o
lo

g
y
2

sm
t

n
d
3
k

s3
d
k
q
4
m

2

ra
ef

sk
y
4

sh
ip

se
c1

sh
ip

_
0
0
1

sh
ip

_
0
0
3

o
la

fu

v
an

b
o
d
y

th
re

ad

n
as

as
rb

s3
d
k
t3

m
2

g
y
ro

ap
ac

h
e2

b
cs

st
k
3
6

g
y
ro

_
k

D
u
b
co

v
a2

m
sc

1
0
8
4
8

th
er

m
o
m

ec
h
_
d
M

ct
2
0
st

if

o
ff

sh
o

re

p
ar

ab
o
li

c_
fe

m

q
a8

fm

cf
d
1

d
en

o
rm

al

cf
d
2

2
cu

b
es

_
sp

h
er

e

R
el

at
iv

e
er

ro
r

(%
)

Sparse matrices

1.2 GHz

1.6 GHz

2.0 GHz

2.4 GHz

Figure 5. Relative estimation errors at matrix level obtained by the CNN models for the selected metrics and frequencies on the
testing matrices. (a) Execution time. (b) Total energy consumption. (c) Package energy consumption. (d) DRAM energy consumption.

Barreda et al. 9

method, which performs an SPMV involving the sparse

matrix reflecting the adjacency graph of the search space

(Langville and Meyer, 2006). In the setting of web search,

each web page is modeled as a node and the hyperlinks in

that web page define directed edges in the model.

Algorithm 2 offers the classic implementation of the

PageRank procedure in which A 2 Rn�n is the weighted

adjacency (sparse) matrix; p; p
0 2 Rn are auxiliary vectors;

s 2 Re is a vector containing the indices of the empty rows

of A; d is the damping factor (usually set to 0:85); and e is

the stopping threshold, which determines the number of

iterations and the algorithm precision.

6.2 Time and energy models

As shown in Algorithm 2, in addition to the SPMV

product (LSPMV), we identify five memory-bounded

loops, Li for i 2 f0; 1; . . . ; 4g, which have been anno-

tated with the corresponding number of flops and mem-

ops.4 To estimate the PageRank run time, we derive an

analytical piecewise model with components that indivi-

dually estimate the execution time of the loops and

SPMV kernel, i.e.

TPRðA;kÞ ¼ TL0
þ kðTSpMV ðAÞ þ

X4

i¼1

TLi
Þ; ð3Þ

where A and k denote the input matrix and the number of

iterations, respectively. To estimate TSPMV, we leverage the

previously trained CNN-based time model. On the other

hand, the execution time for the rest of the loops can be

easily estimated using the roofline model (Ofenbeck et al.,

2014), as they all perform sequential memory accesses.

This technique utilizes the arithmetic intensity

(ILi
¼ maxðf lopsLi

;1Þ
maxðmemopsLi

��;1Þ, where � refers to the data type size

in bytes) to infer the upper bound of flops/s at which the

loop can be realized based on the peak processor perfor-

mance (p) and the memory bandwidth (b). Thus, the Li

run time is estimated as TLi
¼ maxðf lopsLi

;1Þ
minðp;b�ILi

Þ . Similar to the

time model in Equation (3), the energy counterpart is

expressed as:

EPRðA;kÞ ¼ EL0
þ k ESpMV ðAÞ þ

X4

i¼1

ELi

 !
¼ �PL0

� TL0

þ k ESpMV ðAÞ þ
X4

i¼1

�PLi
� TLi

 !
:

ð4Þ

In this case, we empirically assign �PLi
based on the

average power drawn by the processor when executing

instructions at the intensity ILi
. To estimate ESPMV (A) we

use the CNN trained in Section 5 for predicting the total

energy consumption.

6.3 Validation

To prepare the experimental setup for the PageRank algo-

rithm, we selected six sparse matrices from the Stanford

Network Analysis Platform (SNAP) of the Suite Sparse

Matrix Collection, related to social/communication net-

works and web graphs. We then ran the PageRank

Algorithm 2. Realization of the PageRank algorithm.

10 The International Journal of High Performance Computing Applications XX(X)

algorithm with d ¼ 0:85; e¼ 10�6 for these matrices on the

Intel Xeon Haswell core characterized in Section 5, and

measured the global and loop-level performance and total

energy consumption via Intel RAPL counters. To reduce

variability, we computed the average values over 100

executions. In parallel, we fed the related matrix vpos
0
array

to the CNN-based models for predicting the SPMV run time

and total energy consumption. The execution time for the

rest of the loops was estimated via the roofline model,

while the energy consumption was obtained by multi-

plicating its predicted TLi
by the associated empirical

average power �PLi
. For the roofline model we set

p ¼ 16 DPFLOPS=cycle � 2:4 GHz ¼ 38:4 GFLOPS=s5 as

defined by the processor parameters, while we established

b ¼ 4:323 GB=s empirically, according to the memory

bandwidth obtained from an independent execution of the

STREAM benchmark (McCalpin, 1997–2007). In these

experiments, we only targeted the highest CPU frequency,

i.e. 2.4 GHz.

To assess the accuracy of our piecewise models, we use

both the REs and the weighted relative errors (WRE) at

global and loop (including the SPMV kernel) levels. In this

specific case, to account for positive and negative execu-

tion time relative errors, we drop the absolute value oper-

ator from Equation (1), i.e.:

RETLi
¼

Testimated
Li

� Tmeasured
Li

Tmeasured
Li

: ð5Þ

On the other hand, the WRE for the same metric is

defined as follows:

WRET Li
¼

Testimated
Li

� Tmeasured
Li

Taverage

; ð6Þ

where the average cost per loop is given as:

Taverage ¼
Tmeasured

SpMV þ
X4

i¼0

Tmeasured
Li

6
: ð7Þ

The expression for WRESPMV is defined analogously to

that in Equation (6) but replacing the term T Li
by TSPMV.

With that, the total WRE for the total PageRank algorithm

execution time, i.e. T PR, is defined as:

WRET PR
¼

WRET SpMV

�� ��þX4

i¼0

WRET Li

��� ���
6

: ð8Þ

In this regard, WRE offers more an insightful view than

RE, as it highlights critical REs while smoothens others

with little impact on the overall execution time. For

instance, when Testimated
Li

> Taverage, WRETLi
carries more

weight than RETLi
. Conversely, WRETLi

results in less

weight than RETLi
when T measured

Li
< T average. Alternatively,

the corresponding expressions for calculating the energy

consumption WREs are defined as in Equations (6) and

(8), but using ELi
instead.

Figure 6 shows the actual (i.e., measured) vs estimated

performance/energy consumption per loop iteration (left Y-

axis, in log scale) along with their relative and weighted

errors at both loop and global levels (right Y-axis). Note the

scale ½�60%;þ60%� used in the right Y-axis for the

(W)RE, where negative errors correspond to underestima-

tions while positive errors reflect overestimations. A first

inspection of the plots reveals that the REs for both execu-

tion time and energy consumption are, in general, not larger

than 10%, indicating that both the CNN and roofline-based

models deliver fairly good estimations at both loop and

10-10

10-8

10-6

10-4

10-2

100

10

(a)

(b)

2

L
0

L
1

S
P
M

V

L
2

L
3

L
4

T
o
ta

l

L
0

L
1

S
P
M

V

L
2

L
3

L
4

T
o
ta

l

L
0

L
1

S
P
M

V

L
2

L
3

L
4

T
o
ta

l

L
0

L
1

S
P
M

V

L
2

L
3

L
4

T
o
ta

l

L
0

L
1

S
P
M

V

L
2

L
3

L
4

T
o
ta

l

L
0

L
1

S
P
M

V

L
2

L
3

L
4

T
o
ta

l -60

-40

-20

 0

 20

 40

 60

cit-HepPh rgg-n-2-24-s0 wb-edu web-BerkStan web-NotreDame wiki-Vote

E
x
ec

u
ti

o
n
 t

im
e

(s
)

R
el

at
iv

e/
W

ei
g
h
te

d
 e

rr
o
r

(%
)

Measured

Estimated

Relative error

Weighted error

10-8

10-6

10-4

10-2

100

102

104

L
0

L
1

S
P
M

V

L
2

L
3

L
4

T
o

ta
l

L
0

L
1

S
P
M

V

L
2

L
3

L
4

T
o

ta
l

L
0

L
1

S
P
M

V

L
2

L
3

L
4

T
o

ta
l

L
0

L
1

S
P
M

V

L
2

L
3

L
4

T
o

ta
l

L
0

L
1

S
P
M

V

L
2

L
3

L
4

T
o

ta
l

L
0

L
1

S
P
M

V

L
2

L
3

L
4

T
o

ta
l -60

-40

-20

 0

 20

 40

 60

cit-HepPh rgg-n-2-24-s0 wb-edu web-BerkStan web-NotreDame wiki-Vote

T
o

ta
l

en
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

J)

R
el

at
iv

e/
W

ei
g
h
te

d
 e

rr
o
r

(%
)

Measured

Estimated

Relative error

Weighted error

Figure 6. Measured vs estimated PageRank execution time/energy consumption with relative and weighted errors for the testing
matrices. (a) Execution time. (b) Total energy consumption.

Barreda et al. 11

global levels. Focusing on WREs, however, we detect rel-

evant underestimations for both TSPMV and ESPMV, of about

�40%. This is because the SPMV kernel consumes a con-

siderable portion of the overall time and energy of the

PageRank algorithm, concretely from roughly 63% to

85% for the smallest and largest matrices, respectively. The

WRE for the rest of the loops is, in contrast, smoothened. In

the light of the results, we can consider that the analytical

performance and energy consumption models, combining

the CNN-based ones, provide fairly accurate estimations

for the PageRank algorithm. We also note that our CNN-

based models can be useful to estimate any other algorithm

internally realizing the SPMV in its core.

7 Conclusions

In this paper, we have presented a series of CNNs to predict

the execution time and the energy consumption of the

SPMV kernel, a memory-bounded operation that is funda-

mental in a broad range of scientific and engineering prob-

lems. We demonstrate that the CNN-based models can

capture the intricate patterns and features of the sparse

matrix (stored in CSR format), which dictate the irregular

accesses to the dense input vector. Specifically, our models

target the execution time and the total, package, and

DRAM energy, measured via Intel RAPL counters at four

different processor frequencies. In addition, we employ the

PageRank algorithm as a use case to build high-level esti-

mators for run time and energy consumption that combine

two techniques: the well-known roofline-model and our

SPMV CNN-based models.

During the experimental evaluation, we calculated the

hyperparameters for the models targeting the execution

time and total energy consumption metrics at the highest

frequency. The rest of the models predicting run time and

total, package, and DRAM energy at lower frequencies

inherited the hyperparameters. With them, we trained the

networks using the sparse matrices blocks from the Suite-

Sparse matrix collection labeled with the aforementioned

metrics values corresponding to the blockwise realization

of the SPMV on an Intel Xeon Haswell core. In general, the

RE metrics for the studied models range between 0.5% and

14%, which indicates that the models provide fairly good

estimations, even those trained with the inherited hyper-

parameters. We observed that the models targeting higher

frequencies for all metrics, and especially those modeling

the DRAM energy component, delivered slightly higher RE

values compared with the rest. The study performed for the

testing matrices revealed that RE was always below 1% for

roughly half of the tested matrices and all metrics and

frequencies. The time-energy models designed for the

PageRank algorithm showed that our CNN models can be

integrated into more complex ones, delivering fair results,

which can then be leveraged to perform off-line estimations

of the desired metric.

All in all, the main benefit of our time-energy CNN-

based models is that, given trained models for a variety

of processor architectures, selecting the best option (pro-

cessor and configuration, e.g. operation frequency) does

not require direct access to the target platforms. However,

we also acknowledge some weaknesses: i) the inference

costs (for both runtime and energy consumption) are con-

siderably higher than realizing the SPMV on the target

architecture; and ii) the proposed blockwise SPMV algo-

rithm is slightly less efficient than the current state-of-the-

art SPMV implementations. Nevertheless, we believe that

estimating the execution cost of irregular operations, such

as the SPMV, paves the way toward applying similar ML-

driven techniques to modeling the cost of more complex

numerical kernels when no access to the target platform is

provided.

As future work, we plan to extend the CNNs to estimate

the execution time and energy consumption of the parallel

implementation of the SPMV operation. An additional goal

is to leverage this methodology to model both run time and

energy consumption of more complex linear algebra oper-

ations targeting a wider range of platforms. To avoid the

hyperparameter optimization costs, we will migrate pre-

trained models to estimate the performance/energy con-

sumption of other computing architectures.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This work was supported by project TIN2017-

82972-R from the MINECO, Spain. Manuel F Dolz was

also supported by the Plan GenT project CDEIGENT/

2018/014 from the Generalitat Valenciana, Spain. Maria

Barreda was also supported by the POSDOC-A/2017/11

project from the Universitat Jaume I.

ORCID iD

Manuel F Dolz https://orcid.org/0000-0001-9466-3398

Notes

1. The row-density is number of non-zeros of per row (nzr)

relative to the row size (n), i.e. nzr
n
2 ½0; 1�.

2. The compressed row/column formats are probably the

most popular arrangements for storing general sparse

matrices, as they make absolutely no assumptions about

the sparsity structure of the matrix and do not store any

unnecessary elements. These formats are well supported

in many numerical computing environments, such as

Matlab, Octave or Julia.

3. We assume that the “model” term comprises the combi-

nation of CNN architecture and its corresponding

numerical values for weights and bias.

4. A memop accounts for read and write memory opera-

tions. We do not distinguish between the memop type.

12 The International Journal of High Performance Computing Applications XX(X)

https://orcid.org/0000-0001-9466-3398
https://orcid.org/0000-0001-9466-3398
https://orcid.org/0000-0001-9466-3398

5. The DP FLOPS unit refers to double-precision floating-

point operations.

References

Abadi M, Agarwal A, Barham P, et al. (2015) TensorFlow: large-

scale machine learning on heterogeneous systems. Available

at: https://www.tensorflow.org/. Software available from ten

sorflow.org (accessed July 2020).

Barreda M, Dolz MF and Castaño MA (2020a) Block-wise sparse

matrix-vector product dataset and convolutional neural nets

for estimating the run time and energy consumption of the

sparse matrix-vector product. Available at: https://doi.org/10.

5281/zenodo.3956057 (accessed July 2020).

Barreda M, Dolz MF and Castaño MA (2020b) Convolutional

neural nets for estimating the run time and energy consump-

tion of the sparse matrix-vector product-spmv-cnn. Available

at: https://github.com/hpca-uji/SpMV-CNN-Model/releases/

tag/v1.0.0.

Barreda M, Dolz MF, Castaño MA, et al. (2020c) Performance

modeling of the sparse matrix-vector product via convolu-

tional neural networks. The Journal of Supercomputing. Epub

ahead of print 04 February 2020. DOI: 10.1007/s11227-020-

03186-1.

Benatia A, Ji W, Wang Y, et al. (2016) Machine learning

approach for the predicting performance of SpMV on GPU.

In: 2016 IEEE 22nd International Conference on Parallel and

Distributed Systems (ICPADS), Wuhan, China, 13–16 Decem-

ber 2016, pp. 894–901. DOI:10.1109/ICPADS.2016.0120.

Bergstra J, Yamins D and Cox DD (2013) Hyperopt: a Python

library for optimizing the hyperparameters of machine learn-

ing algorithms. In: Proceedings of the 12th Python in science

conference, volume 13, Austin, Texas, USA, 24–29 June 2013,

p. 20. Citeseer.

Bianchini M, Gori M and Scarselli F (2005) Inside PageRank.

ACM Transactions on Internet Technology 5(1): 92–128.

Bishop CM (2006) Pattern Recognition and Machine Learning

(Information Science and Statistics). Berlin, Heidelberg:

Springer-Verlag. ISBN 0387310738.

Boureau Y, Ponce J and Lecun Y (2010) A theoretical analysis of

feature pooling in visual recognition. In: ICML 2010—Pro-

ceedings, 27th International Conference on Machine Learn-

ing, ICML, Haifa, Israel, 21–24 June 2010. ISBN

9781605589077, pp. 111–118.

Chollet F. (2015) Keras. Available at: https://github.com/fchollet/

keras (accessed July 2020).

Cui H, Hirasawa S, Kobayashi H, et al. (2018) A machine

learning-based approach for selecting SpMV kernels and

matrix storage formats. IEICE Transactions on Information

and Systems E101.D(9): 2307–2314.

Davis TA and Hu Y (2011) The University of Florida sparse

matrix collection. ACM Transactions on Mathematical Soft-

ware 38(1): 1–25.

Eijkhout V and Pozo R (1994) Data structures and algorithms for

distributed sparse matrix operations. Technical report. Univer-

sity of Tennessee, Knoxville, TN, USA.

Elafrou A, Goumas G and Koziris N (2017) Performance analysis

and optimization of sparse matrix-vector multiplication on

modern multi- and many-core processors. In: 2017 46th Inter-

national Conference on Parallel Processing (ICPP), Bristol,

UK, 14–17 September 2017, pp. 292–301. DOI: 10.1109/

ICPP.2017.38.

Endrei M, Jin C, Dinh M, et al. (2019) Statistical and machine

learning models for optimizing energy in parallel applications.

The International Journal of High Performance Computing

Applications 33: 1079–1097.

Gkountouvas T, Karakasis V, Kourtis K, et al. (2013) Improving

the performance of the symmetric sparse matrix-vector multi-

plication in multicore. In: 2013 IEEE 27th International Sym-

posium on Parallel and Distributed Processing, Boston, MA,

USA, 20–24 May 2013, pp. 273–283. DOI:10.1109/IPDPS.

2013.43.

Glorot X, Bordes A and Bengio Y (2011) Deep sparse rectifier

neural networks. In: Gordon G, Dunson D and Dudk M (eds)

Proceedings of the Fourteenth International Conference on

Artificial Intelligence and Statistics, Proceedings of Machine

Learning Research, volume 15. Fort Lauderdale, FL, USA:

PMLR, pp. 315–323. URL http://proceedings.mlr.press/v15/

glorot11a/glorot11a.pdf (accessed July 2020).

Götz M and Anzt H (2018) Machine learning-aided numerical

linear algebra: convolutional neural networks for the efficient

preconditioner generation. In: Proceedings of ScalA’18: Ninth

Workshop on Latest Advances in Scalable Algorithms for

Large-Scale Systems, WS at Supercomputing. Dallas, Texas,

USA, 12 November 2018, DOI: 10.13140/RG.2.2.30244.53122.

Gu J, Wang Z, Kuen J, et al. (2018) Recent advances in convolu-

tional neural networks. Pattern Recognition 77(C): 354–377.

Langville AN and Meyer CD (2006) Google’s PageRank and

Beyond: The Science of Search Engine Rankings. Princeton,

NJ: Princeton University Press. ISBN 0691122024.

LeCun Y, Bengio Y and Hinton G (2015) Deep learning. Nature

521: 436–444.

Lee C, Gallagher PW and Tu Z (2015) Generalizing pooling

functions in convolutional neural networks: mixed, gated, and

tree. CoRR abs/1509.08985. URL http://arxiv.org/abs/1509.

08985 (accessed July 2020).

Li K, Yang W and Li K (2015) Performance analysis and optimi-

zation for SpMV on GPU using probabilistic modeling. IEEE

Transactions on Parallel and Distributed Systems 26(1):

196–205.

Llopis P, Dolz MF, Blas JG, et al. (2016) Analyzing the energy

consumption of the storage data path. The Journal of Super-

computing 72(11): 4089–4106.

Malossi ACI, Ineichen Y, Bekas C, et al. (2014) Performance and

energy-aware characterization of the sparse matrix-vector

multiplication on multithreaded architectures. In: 2014 43rd

International Conference on Parallel Processing Workshops,

Minneapolis, MN, USA, 9–12 September 2014, pp. 139–148.

DOI:10.1109/ICPPW.2014.30.

McCalpin JD (1991–2007) Stream: sustainable memory band-

width in high performance computers. Technical report. Char-

lottesville, Virginia: University of Virginia. Available at:

http://www.cs.virginia.edu/stream/. A continually updated

technical report. http://www.cs.virginia.edu/stream/ (accessed

July 2020).

Barreda et al. 13

https://www.tensorflow.org/
http://tensorflow.org
http://tensorflow.org
https://doi.org/10.5281/zenodo.3956057
https://doi.org/10.5281/zenodo.3956057
https://github.com/hpca-uji/SpMV-CNN-Model/releases/tag/v1.0.0
https://github.com/hpca-uji/SpMV-CNN-Model/releases/tag/v1.0.0
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://arxiv.org/abs/1509.08985
http://arxiv.org/abs/1509.08985
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/

Nisa I, Siegel C, Rajam AS, et al. (2018) Effective machine learn-

ing based format selection and performance modeling for

SpMV on GPUs. EasyChair Preprint no. 388. DOI: 10.

29007/lnnt.

Ofenbeck G, Steinmann R, Caparros V, et al. (2014) Applying the

roofline model. In: 2014 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS),

Monterey, CA, USA, 23–25 March 2014, pp. 76–85. DOI:

10.1109/ISPASS.2014.6844463.

Pumperla M (2017) Hyperas: a very simple convenience wrapper

around hyperopt for fast prototyping with Keras model. Avail-

able at: http://maxpumperla.com/hyperas/ (accessed July

2020).

Schmidhuber J (2015) Deep learning in neural networks: an over-

view. Neural Networks 61: 85–117.

Song S, Su C, Rountree B, et al. (2013) A simplified and accurate

model of power-performance efficiency on emergent GPU

architectures. In: 2013 IEEE 27th International Symposium

on Parallel and Distributed Processing, Boston, MA, USA,

20–24 May 2013, pp. 673–686. DOI: 10.1109/IPDPS.2013.73.

Tiwari A, Laurenzano MA, Carrington L, et al. (2012) Modeling

power and energy usage of HPC kernels. In: 2012 IEEE 26th

International Parallel and Distributed Processing Symposium

Workshops PhD Forum, Shanghai, China, 21–25 May 2012,

pp. 990–998. DOI: 10.1109/IPDPSW.2012.121.

Zhao Y, Li J, Liao C, et al. (2018) Bridging the gap between deep

learning and sparse matrix format selection. SIGPLAN Notice

53(1): 94–108.

Author biographies

Maria Barreda is a postdoctoral researcher at Universitat

Jaume I. She obtained her Ph.D. in Advanced Computer Sys-

tems in the Universitat Jaume I, in 2017. During her research

career, she has worked in energy efficiency techniques

applied to high-performance computing applications, as

well as in the analysis and optimization of algorithms and

sparse linear algebra solvers in different types of processors.

Maria has participated in several projects funded by the

Spanish government, although her participation in the EU

H2020—FETHPC—INTERTWinE project stands out. In

this project, her main research line has been the interoperabil-

ity between programming models. Moreover, she did intern-

ships at the Technische Universität of Braunschweig and

INRIA, Paris. Nowadays, her research interests are focused

on reproducibility techniques and deep learning in HPC.

Manuel F Dolz received his Ph.D. in Advanced Computer

Systems from the Universitat Jaume I (Spain) in 2014.

Currently, he is a distinguished researcher at the same uni-

versity. During his career, he worked as a pre and postdoc-

toral researcher at the University of Hamburg and

University of Carlos III Madrid (UC3M) for the EU proj-

ects Exa2Green and RePhrase, respectively. Manuel has

also participated in other RþDþi projects at national and

regional levels. His main research interests are parallel

programming environments, energy efficiency, and deep

learning for the high-performance parallel computing

domain. He collaborates with national universities (Tech-

nical University of Valencia and UC3M) and international

institutions (Deutsches Klimarechenzentrum-University of

Hamburg, Germany, and École Normale Supériere, Lyon,

France). Manuel has participated in different international

conferences and workshops program committees and acted

as a reviewer in international conferences and journals

indexed in JCR. In total, he has published more than 75

articles in conferences and national and international jour-

nals, 24 of them indexed in JCR.

M Asunción Castaño received her B.S. degree from the

Universidad Politécnica de Valencia (Spain) in 1991 and

her Ph.D. in Computer Science in 1998 from the same

University. She has participated in different EU, national

and regional projects focused on both research and educa-

tion. Ma Asunción also belongs to the Steering Committee

and the Scientific Committee of several conferences. She

focuses her research on deep learning, energy saving on

HPC platforms, and educational innovation.

14 The International Journal of High Performance Computing Applications XX(X)

http://maxpumperla.com/hyperas/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

